International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2575–2592 | Cite as

New paleomagnetic results from Upper Cretaceous arc-type rocks from the northern and southern branches of the Neotethys ocean in Anatolia

  • Mualla Cengiz Cinku
  • Friedrich Heller
  • Timur Ustaömer
Original Paper

Abstract

A paleomagnetic study of Cretaceous arc type rocks in the Central-Eastern Pontides and in the Southeastern Taurides investigates the tectonic and paleolatitudinal evolution of three volcanic belts in Anatolia, namely the Northern and Southern Volcanic Belts in the Pontides and the SE Taurides volcanic belt. The paleomagnetic data indicate that magnetizations were acquired prior to folding at most sampling localities/sites, except for those in the Erzincan area in the Eastern Pontides. The Southern Volcanic Belt was magnetized at a paleolatitude between \(23.8_{-3.8}^{+4.2}\)°N and \(20.2_{-1.2}^{+1.3}\)°N. Hisarlı (J Geodyn 52:114–128, 2011) reported a more northerly paleolatitude (\(26.6_{-4.6}^{+5.1}\)°N) for the Northern Volcanic Belt. The comparison of the new paleomagnetic results with previous ones in Anatolia allows to conclude that the Southern Volcanic Belt in the Central-Eastern Pontides was emplaced after the Northern Volcanic Belt as a result of slab-roll back of the Northern Neotethys ocean in the Late Cretaceous. In the Southeast Taurides, Upper Cretaceous arc-related sandstones were at a paleolatitude of \(16.8_{-3.8}^{+4.2}~\). The Late Cretaceous paleomagnetic rotations in the Central Pontides exhibit a counterclockwise rotation of \(R\pm \Delta R=-37.1{}^\circ \pm 5.8{}^\circ\) (Group 1; Çankırı, Yaylaçayı Formation) while Maastrichtian arc type rocks in the Yozgat area (Group 2) show clockwise rotations R + ΔR = 33.7° ± 8.4° and R + ΔR = 29.3° ± 6.0°. In the SE Taurides counterclockwise and clockwise rotations of \(R\pm \Delta R=-48.6\text{ }\!\!{}^\circ\!\!\text{ }\pm 5.2\text{ }\!\!{}^\circ\!\!\text{ }\) and \(R\pm \Delta R=+34.1\text{ }\!\!{}^\circ\!\!\text{ }\pm 15.1\text{ }\!\!{}^\circ\!\!\text{ }\) are obtained (Group 4; Elazığ Magmatic Complex). The Late Cretaceous paleomagnetic rotations in the Pontides follow a general trend in concordance with the shape of the suture zone after the collision between the Pontides and the Kırşehir block. The affect of the westwards excursion of the Anatolian plate and the associated fault bounded block rotations in Miocene are observed in the east of the study area and the SE Taurides.

Key words

Paleomagnetic Upper Cretaceous Pontides Taurides Neotethys Suture Zone 

Notes

Acknowledgements

This study was financially supported by the Scientific Research Projects Coordination Unit of Istanbul University (Project number 7272). We would like to thank Kenan Cinku for his help in the field work. Erwin Appel is very much appreciated for his kindly help by using the paleomagnetic laboratory in the University of Tübingen. Nurcan Kaya is thanked for her help in paleomagnetic measurements. Prof. Dr. John Geissman and one anonymous reviewer are very much appreciated for their helpful suggestions.  

References

  1. Aktaş G, Robertson HF (1984) The Maden Complex, S E Turkey : evolution of a Neotethyan active margin In: Dixon JE, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Published for The Geological Society by Blackwell Scientific Publication Oxford London Edinburgh Boston Palo Alto Melbourne, New Jersey pp 375–401Google Scholar
  2. Aygül M, Okay AI, Oberhansli R, Schmidt A, Sudo, Masafumi (2015) Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: petrogenetic and tectonic implications. J Asian Earth Sci. doi: 10.1016/j.jseaes.2015.07.005
  3. Beyarslan M, Bingöl AF (2000) Petrology of a supra-subduction zone ophiolite (Elazığ Turkey). Can J Earth Sci 37:1411–1424CrossRefGoogle Scholar
  4. Birgili S, Yoldaş R, Nalan UG (1974) The geology of Cankırı-Corum basin and a preliminary report on its petroleum possibilities. TPC Report No: 1216 (unpublished)Google Scholar
  5. Boulton SJ (2009) Record of Cenozoic sedimentation from the Amanos Mountains, Southern Turkey: implications for the inception and evolution of the Arabia-Eurasia continental collision. Sediment Geol 216:29–47CrossRefGoogle Scholar
  6. Boulton SJ, Robertson AHF, Unlügenç ÜC (2006) Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, Southern Turkey: a two-phase, foreland basin then transtensional basin model. In: Robertson AHF, Mountrakis D (eds) Tectonic Evolution of the Eastern Mediterranean. Geological Society (Special Publications) 260, pp 613–634Google Scholar
  7. Bozkurt E, Winchester JA, Yiğitbaş E, Ottley CJ (2008) Proterozoic ophiolites and maficultramafic complexes marginal to the İstanbul Block: an exotic terrane of Avalonian affinity in NW Turkey. Tectonophysics 461:240–251. doi: 10.1016/j.tecto.2008.04.027 CrossRefGoogle Scholar
  8. Boztuğ D (2000) S–I–A-type intrusive associations: geodynamic significance of synchronism between metamorphism and magmatism in Central Anatolia, Turkey. In: Bozkurt E, Winchester J, Piper JA (eds) Tectonics and Magmatism in Turkey and the Surrounding Area. Geol Soc Lond Spec Publ 173:407–424Google Scholar
  9. Boztuğ D, Jonckheere RC (2007) Apatite fission-track data from central-Anatolian granitoids (Turkey): constraints on Neo-Tethyan closure. Tectonics 26:TC3011Google Scholar
  10. Boztuğ D, Arehart GB, Platevoet B, Harlavan Y, Bonin B (2007) High-K calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a postcollisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineral Petrol 91:191–223CrossRefGoogle Scholar
  11. Cengiz Çinku M, Hisarli ZM, Yılmaz Y, Ülker B, Kaya N, Öksüm E et al (2016) The tectonic history of the Niğde-Kırşehir Massif and the Taurides since the Late Mesozoic: Paleomagnetic evidence for two-phase orogenic curvature in Central Anatolia, Tectonics 35:772–811Google Scholar
  12. Channell JET, Tüysüz O, Bektas¸ O, Şengör, AM (1996) Jurassic-Cretaceous paleomagnetism and paleogeography of the Pontides (Turkey). Tectonics 15(1):201–212CrossRefGoogle Scholar
  13. Çinku MC (2011) Paleogeographic evidence on the Jurassic tectonic history of the Pontides: new paleomagnetic data from the Sakarya continent and Eastern Pontides. Int J Earth Sci 100(7):1633–1645CrossRefGoogle Scholar
  14. Çinku MC, Hirt AM, Hisarlı ZM, Heller F, Orbay N (2010) Southward migration of arc magmatism during latest Cretaceous associated with slab steepening, East Pontides, N Turkey: new paleomagnetic data from the Amasya region. Phys Earth Planet Inter 182:18–29CrossRefGoogle Scholar
  15. Çinku MC, Hisarlı MZ, Heller F, Orbay N, Ustaömer T (2011) Middle Eocene paleomagnetic data from the eastern Sakarya zone and the central pontides: implications for the tectonic evolution of north central Anatolia. Tectonics 30:TC1008CrossRefGoogle Scholar
  16. Çinku MC, Hisarlı MZ, Hirt AM, Heller F, Ustaömer T, Kaya N, Öksüm E, Orbay N (2015) Evidence of late cretaceous oroclinal bending in north-central anatolia: paleomagnetic results from Mesozoic and Cenozoic rocks along the Izmir-Ankara-Erzincan Suture Zone. Geological Society Special Issue; Palaeomagnetism in Fold and Thrust Belts: New Perspectives; Edt. Belen Oliva Urcia Geol. Soc. London Spec. Publ., 08/2015; doi: 10.1144/SP425.2
  17. Day R, Fuller MD, Schmidt VA (1977) Hysteresis Properties of Titanomagnetites: Grain Size And Composition Dependence. Phys Earth Planet Int 13:260–267CrossRefGoogle Scholar
  18. Deenen MHL, Langereis CG, van Hinsbergen DJJ, Biggin AJ (2011) Geomagnetic secular variation and the statistics of palaeomagnetic directions. J Geophys Int 186:509–520CrossRefGoogle Scholar
  19. Demarest HH Jr (1983) Error analysis for the determination of tectonic rotation from paleomagnetic data. J Geophys Res 88:4321–4328, doi: 10.1029/JB088iB05p04321 CrossRefGoogle Scholar
  20. Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J Geophys Res 107(B3). doi: 10.1029/2001JB000487
  21. Dunlop DJ, Özdemir Ö (1997) Rock Magnetism: Fundamentals and Frontiers. Vol 573, Cambridge University Press, New YorkGoogle Scholar
  22. Enkin RJ, Watson GS (1996) Statistical analysis of paleomagnetic in clination data. J Geophys Int 126:495–504CrossRefGoogle Scholar
  23. Erdoğan B, Akay E, Şirin Uğur M (1996) Geology of the Yozgat region and evolution of the collisional Çankırı Basin. Inter Geol Rev 38:788–806CrossRefGoogle Scholar
  24. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond 217:195–305CrossRefGoogle Scholar
  25. Floyd PA, Yalınız MK, Göncüoğlu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241CrossRefGoogle Scholar
  26. Gans CR, Beck SL, Zandt G, Berk CB, Ozacar AA (2009) Detecting the limit of the slab break-off in Central Turkey: new high-resolution Pn tomography results. Geophys J Int 179:1566–1572CrossRefGoogle Scholar
  27. Göncüoğlu MC, Toprak V, Kuscu I, Erler A, Olgun E (1991) Geology of the western part of the Central Anatolian Massif, Part 1: Southern Section: Unpubl. Report No.2909, Turkish Petroleum Company Report (in Turkish)Google Scholar
  28. Görür N, Tüysüz O (1997) Petroleum geology of the southern continental margin of the Black Sea. In: Robinson AG (ed), Regional and Petroleum Geology of the Black Sea and Surrounding Region, AAPG Memoir, vol. 68. AAPG, Tulsa, OK, pp 241–254Google Scholar
  29. Hisarlı ZM (2011) New paleomagnetic constraints on the late Cretaceous and early Cenozoic tectonic history of the Eastern Pontides. J Geodyn 52:114–128CrossRefGoogle Scholar
  30. İlbeyli N, Pearce JA, Thirwall MF, Mitchell JG (2004) Petrogenesis of collision related plutonics in central Anatolia, Turkey. Lithos 72:163–182CrossRefGoogle Scholar
  31. Jelínek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its applications. Geofyzika Brno 88Google Scholar
  32. Kadıoğlu YK, Dilek Y, Foland KA (2006) Slab breakoff and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian Crystalline Complex, Turkey. In: Dilek Y, Pavlides S (eds) Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geol. Soc. America, Boulder, CO, Special Papers, 409:381–415Google Scholar
  33. Karaoğlan F, Parlak O, Klötzli U, Thöni M, Koller F (2013) U-Pb and Sm-Nd geochronology of the Kızıldağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in southern Neotethys. Geol Mag 150:283–299CrossRefGoogle Scholar
  34. Karıg DE, Kozlu H (1990) Late Palaeogene evolution of the triple junction region near Maraş south-central Turkey. J Geol Soc London 147:1023–1034CrossRefGoogle Scholar
  35. Kaymakçı N, Duermeijer CE, Langereis C, White SH, VAN DIJK PM (2003) Palaeomagnetic evolution of the Cankırı Basin (central Anatolia, Turkey): implications for oroclinal bending due to indentation. Geological Magazine 140:343–355 Google Scholar
  36. Kaymakçı N, Özçelik Y, White SH, van Dijk PM (2009) Tectono-stratigraphy of the Çankırı Basin: Late Cretaceous to early Miocene evolution of the Neotethyan Suture Zone in Turkey. In: van Hinsbergen DJ, Edwards MA, Govers R (eds) Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone, Geol Soc Lond Spec. Publ. 311:67–106Google Scholar
  37. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophy J R Astron Soc 62:699–718CrossRefGoogle Scholar
  38. Kozlu H (1997) Tectono-stratigraphic units of the Neogene basins (Iskenderun, Misis Andırın) and their tectonic evolution in the eastern Mediterranean region. Unpublished PhD Thesis. Çukurova University, Natural Science Institute, Adana-Turkey (Turkish)Google Scholar
  39. Kröner A, Şengör AMC (1990) Archean and Proterozoic ancestry in late Precambrian to early Paleozoic crustal elements of southern Turkey as revealed by single-zircon dating. Geology 18:1186–1190CrossRefGoogle Scholar
  40. Lefebvre C, Meijers MJM, Kaymakçı N, Peynircioğlu A, Langereis CG, van Hinsbergen DJJ (2013) Reconstructing the geometry of central Anatolia during the Late Cretaceous: large-scale Cenozoic rotations and deformation between the Pontides and Taurides. EPSL 366:83–98. doi: 10.1016/j.epsl.2013.01.003 CrossRefGoogle Scholar
  41. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162CrossRefGoogle Scholar
  42. McElhinny MW (1964) Statistical significance of the fold test in palaeomagnetism. Geophys J R Astron Soc 8:338–340. doi: 10.1111/j.1365-246X.1964.tb06300.x CrossRefGoogle Scholar
  43. McFadden PL (1990) The fold test as an analytical tool. Geophy J Inst 135:329–338CrossRefGoogle Scholar
  44. McFadden PL, McElhinny MW (1990) Classification of the reversal test in palaeomagnetism. Geophy J Int 103:725–729CrossRefGoogle Scholar
  45. Meijers MJM, Kaymakçı N, Van Hinsbergen DJJ, Langereis CG, Stephenson RA, Hippolyte J-C (2010) Late Cretaceous to Paleocene oroclinal bending in the Central Pontides (Turkey). Tectonics 29:TC4016. doi: 10.1029/2009TC002620 CrossRefGoogle Scholar
  46. Michard A, Whitechurch H, Rico LE, Montigny R, Yazgan E (1984) Tauric subduction (Malatya-Elazığ provinces) and its bearing on tectonics of the Tethyan realm in Turkey. In: Dixon JE, Robertson AHF (eds) The Geological Evolution of the Eastern Mediterranean. Blackwell Scientific Publications, Oxford, pp 361–373Google Scholar
  47. MTA (2002) Geological Map of Turkey, 1:500,000, Maden Tektik ve Arama Genel Müdürlüğü (General Directorate of Mineral Research and Exploration), AnkaraGoogle Scholar
  48. Nairn S (2011) Testing alternative models of continental collision in Central Turkey by a study of the sedimentology, provenance and tectonic setting of Late Cretaceous–Early Cenozoic syn-tectonic sedimentary basins. PhD thesis, Edinburgh University, p 395Google Scholar
  49. Nairn SP, Robertson AHF, Ünlügenç UC, Taslı K, Inan N (2012) Tectonostratigraphic evolution of the Upper Cretaceous-Cenozoic central Anatolian basins: an integrated study of diachronous ocean basin closure and continental collision. In: Robertson AHF, Parlak O, Ünlügenç UC (eds) Geological Development of Anatolia and the Easternmost Mediterranean Region. Geol. Soc. Lond. Spec. Publ. 372:343–384. doi: 10.1144/SP372.9
  50. Okay AI, Şahintürk O (1997) Geology of the Eastern Pontides. In: Robinson AG (ed) Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association Petroleum Geology Memoirs 68, 291–311.Google Scholar
  51. Okay AI, Tüysüz O (1999) Tethyan Sutures of Northern Turkey. In: Durand B, Jolivet L, Hovarth F, Séranne M (eds) The Mediterranean Basins, Tertiary Extension within the Alpine Orogen. Geol. Soc. Lond. Spec. Publ. 156:475–515Google Scholar
  52. Okay AI, Satir M, Maluski H, Siyako M, Monie P, Metzger R, Akyüz S (1996) Paleo- and Neo-Tethyan events in northwestern Turkey: Geologic and geochronologic constraints. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge, UK and New York, Cambridge University Press, Cambridge pp 420–441Google Scholar
  53. Okay AI, Satır M, Shang CK (2008) Ordovician metagranitoid from the Anatolide-Tauride Block, northwest Turkey–geodynamic implications. Terra Nova 20:280–288CrossRefGoogle Scholar
  54. Okay AI, Zattin M, Cavazza W (2010) Apatite fissiontrack data for the Miocene Arabia-Eurasia collision. Geology 38:35–38. doi: 10.1130/G30234.1 CrossRefGoogle Scholar
  55. Okay AI, Sunal G, Sherlock S, Altiner D, Tüysüz O, Kylander-Clark ARC, Aygül M (2013) Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides. Tectonics 32:1247–1271. doi: 10.1002/tect.20077 CrossRefGoogle Scholar
  56. Okay AI, Altıner D, Kılıç AM (2015) Triassic limestone, turbidite and serpentinite – Cimmeride orogeny in the Central Pontides: Geological Magazine. doi: 10.1017/S0016756814000429
  57. Özcan A, Erkan A, Keskin A, Oral A, Özer S, Sümengen M, Tekel O (1980) Geology of the Area Between the North Anatolian Fault and the Kırşehir Massif. Maden Tetkik ve Arama Enstitüsü (MTA) Report No. 6722 (in Turkish, unpublished)Google Scholar
  58. Özgül N, Turşucu A (1984) Stratigraphy of the Mesozoic Carbonate Sequence of the Munzur Mountains (Eastern Taurides). In: Tekeli O, Göncüoğlu MC (eds) Geology of the Taurus Belt, Ankara, 173–181Google Scholar
  59. Parlak O, Rızaoğlu T, Bağcı U, Karaoğlan F, Höck V (2009) Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473:173–187CrossRefGoogle Scholar
  60. Perinçek D (1979) The Geology of Hazro–Korudağ–Çüngüsc–Maden–Ergani–Hazar–Elazığ –Malatya Area. Special Publication of the Geological Society of Turkey, AnkaraGoogle Scholar
  61. Rice SP, Robertson AHF, Ustaömer T (2006) Late Cretaceous-Early Cenozoic tectonic evolution of the Eurasian active margin in the central and eastern Pontides, northern Turkey. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern Mediterranean region. Geol. Soc. Lond. Spec. Publ., vol 260 pp 413–445Google Scholar
  62. Rice SP, Roberson, A.H.F., Ustaömer T, İnan T, Taslı K (2009) Late Cretaceous-Early Eocene tectonic development of the Tethyan Suture Zone in the Erzincan area, eastern Pontides, Turkey. Geol Mag 146(4):567–590CrossRefGoogle Scholar
  63. Rızaoğlu T, Parlak O, Höck V, Koller F, Hames WE, Billor Z (2009) Andean-type active margin formation in the eastern Taurides: geochemical and geochronogical evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics 473:188–207CrossRefGoogle Scholar
  64. Robertson AHF (2006) Contrasting modes of ophiolite emplacement in the Eastern Mediterranean region. In: GEE D, Stephenson RA (eds) European Lithosphere Dynamics. Geol. Soc. London, Memoir 32:235–261Google Scholar
  65. Robertson AHF, Dixon JD (1984) Introduction: aspects of the geological evolution of the eastern Mediterranean. In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean. Geol. Soc. Lond. Spec. Publ., 17:1–74Google Scholar
  66. Robertson AH, Ustaömer T, Pickett EA, Collins AS, Andrew T, Dixon JE (2004) Testing models of Late Palaeozoic-Early mesozoic orogeny in western Turkey: support for an evolving open-tethys model. J Geol Soc 161:501–511CrossRefGoogle Scholar
  67. Robertson A, Ustaömer T, Parlak O, Ünlügenç UC, Taslı K, İnan N (2006) The Berit transect of the Tauride thrust belt, S. Turkey: late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the southern Neotethys. J Asian Earth Sci 27:108–145CrossRefGoogle Scholar
  68. Robertson AHF, Parlak O, Rızaoğlu T, Ünlügenc¸ U, İnan N, Taşlı K, Ustaömer T (2007a) Tectonic evolution of the South Tethyan Ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In: Ries AC, Butler RWH, Graham RH (eds) Deformation of the continental crust: the legacy of mike coward. Geol. Soc. Lond. Spec. Publ. vol 272, 231–270Google Scholar
  69. Robertson A, Ustaomer T, Parlak O, Unlugenc UC, Tasli K, Inan N (2007b) The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys (vol 27, pg 108, 2006) J Asian Earth Sci 29(5–6):978–980 (3 p) CrossRefGoogle Scholar
  70. Robertson AH, Parlak O, Ustaömer T, 2009. Melange Genesis And Ophiolite Emplacement Related To Subduction Of The Northern Margin Of The Tauride-Anatolide Continent, Central And Western Turkey. In: van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and Collapse at the Africa-Arabia-Eurasia Subduction Zone. Geol. Soc. London, pp 9–66Google Scholar
  71. Robertson AH, Parlak O, Ustaömer T (2013) Late Palaeozoic Early Cenozoic tectonic development of Southern Turkey and the easternmost Mediterranean region: evidence from the inter-relations of continental and oceanic units. Geological Society, London, Special Publications 2013, vol 372, pp 9–48Google Scholar
  72. Robertson AHF, Parlak O, Ustaömer T, Taşlı K, İnan N, Dumitrica P, Karaoğlan F (2014) Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: New evidence from the Eastern Pontides, Turkey. Geodin Acta.  10.1080/09853111.2013.877240 Google Scholar
  73. Sarıbudak M (1989) New results and a palaeomagnetic overview of the Pontides in Northern Turkey. Geophys. J Int 99:521–531Google Scholar
  74. Şengör AMC (1979) The North Anatolian fault: Its age, offset, and tectonic significance. J Geol Soc Lond 136:268–282Google Scholar
  75. Şengör AMC (1984) The Cimmeride orogenic system and the tectonics of Eurasia, Geol. Soc. America Spec. Paper 195:82Google Scholar
  76. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  77. Stampfli GM (2000) Tethyan oceans. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and Magmatism in Turkey and the Surrounding Area. Geol. Soc. Lond. Spec. Publ. vol 173, pp 1–23Google Scholar
  78. Tatar O, Akpinar Z, Gürsoy H, Piper, J.D.A., Koçbulut F, Mesci BL, Polat A, Roberts AP (2013) Palaeomagnetic evidence for the neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. J Geodynamics 65:244–258CrossRefGoogle Scholar
  79. Tekeli O (1981) Subduction complex of pre-Jurassic age, northern Anatolia, Turkey. Geology 9:68–72CrossRefGoogle Scholar
  80. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJJ, Domeier M, Gaina C, Tohver E, Meert JG, McCausland PJA, Cocks LRM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci Rev 114(3–4):325–368CrossRefGoogle Scholar
  81. Tüysüz O (1990) Tectonic evolution of a part of the Tethyside orogenic collage: the Kargı Massif, northern Turkey. Tectonics 9:141–160CrossRefGoogle Scholar
  82. Tüysüz O (1999) Geology of the Cretaceous sedimentary basins of the western Pontides. Geol J 34:75–93. doi: 10.1002/(SICI)1099-1034(199901/06)34:1/23.0.CO;2-S CrossRefGoogle Scholar
  83. Tüysüz O, Dellaloğlu, AA, Terzioğlu N (1995) A magmatic belt within the Neo-Tethyan suture zone and its role in the tectonic evolution of northern Turkey. Tectonophysics 243:173–191CrossRefGoogle Scholar
  84. Tüysüz O, Yılmaz İÖ, Svabenicka L, Kırıcı S (2012) The Unaz formation: a key unit in the Western Black Sea region, N Turkey. Turk J Earth Sci 21:1009e1028. doi: 10.3906/yer-1006-30
  85. Ustaömer T, Robertson AHF (1993) A Late Palaeozoic–Early Mesozoic marginal basin along the active southern continental margin of Eurasia: evidence from the Central Pontides (Turkey) and adjacent regions. Geol J 28:219–238CrossRefGoogle Scholar
  86. Ustaömer T, Robertson AH (1994) Late Palaeozoic Marginal Basin And Subduction-Accretion: the Palaeotethyan Küre Complex, Central Pontides, Northern Turkey. J Geol Soc 151:291–305CrossRefGoogle Scholar
  87. Ustaömer T, Robertson AHF (1997) Tectonic–sedimentary evolution of the North-Tethyan active margin in the central Pontides of Northern Turkey. In: Robinson AG (ed.) Regional and petroleum geology of the Black Sea region, vol 68. AAPG Memoir, pp 245–290Google Scholar
  88. Van der Voo R (1968) Jurassic, Cretaceous end Eocene pole position from northeastern Turkey. Tectonophysics 6(3):251–269CrossRefGoogle Scholar
  89. Yalınız MK, Göncüoğlu MC, Özkan-Altıner S (2000) Formation and Emplacement Ages of the SSZ-type Neotethyan Ophiolites in Central Anatolia, Turkey: Paleotectonic Implications. Geol J 35:53–68CrossRefGoogle Scholar
  90. Yazgan E, Chessex R (1991) Geology and tectonic evolution of the southeastern Taurides in the region of Malatya. Bull Assoc Turk Pet Geol 3(1):1–42Google Scholar
  91. Yiğitbas E, Elmas A, Yılmaz Y (1999) Pre-Cenozoic tectonostratigraphic components of the western Pontides and their geological evolution. Geol J 34:55–74CrossRefGoogle Scholar
  92. Yiğitbaş E, Yılmaz Y (1996) New evidence and solution to the Maden complex controversy of the Southeast Anatolian orogenic belt (Turkey). Geologische Rundschau 85(2):250–263CrossRefGoogle Scholar
  93. Yılmaz Y (1993) New evidence and model on the evolution of the southeast Anatolian orogen. Geol Soc Am Bull 105:251–271CrossRefGoogle Scholar
  94. Yılmaz Y, Yiğitbaş E, Genç ŞC (1993) Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Publ. I. T. U. Mining Faculty, 12:1280–1297Google Scholar
  95. Yılmaz Y, Tüysüz O, Yiğitbas E, Genç SC, Sengör AMC (1997a) Geology and tectonic evolution of the Pontides. In: Robinson A (ed) Regional and petroleum geology of the Black Sea and surrounding region: American Association of Petroleum Geologists Memoir, no. 68, pp 183–226Google Scholar
  96. Yılmaz Y, Serdar HS, Genc C, Yiğitbaş E, Gürer ÖF, Elmas A, Yıldırım M, Bozcu M, Gürpınar O (1997b) The geology and evolution of the Tokat massif, South-Central Pontides, Turkey. Int Geol Rev 39:365–382CrossRefGoogle Scholar
  97. Yoldaş¸ R (1982) The geology between Tosya (Kastamonu) and Bayat (Corum) area. PhD thesis, University of Istanbul, College of Science, 311p., (unpublished)Google Scholar
  98. Zijderveld JDA (1967) AC Demagnetization of rocks: analysis of results. In: Runcorn SK, Creer KM, Collinson DW (eds) Methods in paleomagnetism pp 254–286Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mualla Cengiz Cinku
    • 1
  • Friedrich Heller
    • 2
  • Timur Ustaömer
    • 1
  1. 1.Faculty of Engineering, Department of Geophysical EngineeringIstanbul UniversityAvcılar/istanbulTurkey
  2. 2.Department of Earth SciencesInstitute of GeophysicsZurichSwitzerland

Personalised recommendations