International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2489–2502 | Cite as

Quaternary over-elevated torrential channels. Characteristics and depositional significance: the Maresme model (Catalonia, NE Spain)

Original Paper
  • 150 Downloads

Abstract

Channel-levee deposits that occur in some large sand-dominated fluvial systems are commonly elevated above the surrounding floodplain. However, the over-elevation processes of small and isolated fluvial channels are poorly documented. The Maresme zone located NE of Barcelona (Spain) offers many examples of small over-elevated channels. This area is characterised by weathered granodiorites forming a thick coarse-grained sand-dominated regolith, which was initially covered by dense forests. In the XVIII and XIX centuries human activity led to the destruction of the vegetal cover, resulting in subsequent erosion and in the intense remobilisation of sediments during storms. Thus, large amounts of sand were transported during historical times. The intermittent discharges were confined to short (few km) and straight channels with high and uncommon gradients from 3.2 to 3.4%. These discharges flowed at high velocities towards the Mediterranean Sea, the regional base-level. High infiltration rates contributed to the accretion of sandy sediments along the channels coevally with levee development. This sandy lithosome, which is usually elevated above the surrounding floodplain, displays a characteristic convex-up cross section.

Keywords

Channel-levee Infiltration Biorhexistasy Maresme Ramblas Rieras Barcelona 

Notes

Acknowledgements

The suggestions and comments of J. Paredes, L.A. Spalletti, S. Rice, R.A. Marston, J. López, P. Busquets, M. López-Blanco, A. Luzón, J. Martin, W. Van De Lageweg and an anonymous referee have considerably improved the original version of the manuscript. M. Comerma (Museu de Mataró) and G. Bravo (Arxiu Municipal d’Argentona) provided valuable local information. This work was partially funded by the Secció de Ciències i Tecnologia, Institut d’Estudis Catalans (IEC) i Reial Acadèmia de Ciències i Arts de Barcelona (RACAB) and the Grup de Qualitat de la Secretaria d’Universitats i Recerca, Generalitat de Catalunya, 2014-SGR-467.

References

  1. Allen JRL (1965) A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5:89–191CrossRefGoogle Scholar
  2. Bagnold RA (1946) Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc R Soc Lond Ser A 187, 1–18CrossRefGoogle Scholar
  3. Barriendos M (1996–1997) El clima histórico de Cataluña. Rev Geogr 30–31:69–96Google Scholar
  4. Bech J (1977) El factor climático en la edafogénesis del Maresme (Barcelona). Rev Geogr 11(1–2):37–61Google Scholar
  5. Bech J, Cardus J, Lasala M, Bouleau A, Lamouroux M, Quantin P, Segalen P (1983) Étude des sols formées sur les granites du Maresme (Catalogne, Espagne). Cahiers de l’ORSTOM, sér. Pédologie 20(3):209–221Google Scholar
  6. Benito G, Díez-Herrero A (2015) Paleoflood hydrology: reconstructing rare events and extreme flood disasters. In: Paron P, Di Baldassarre G (eds) Hydrometeorological hazards, risks and disasters. Elsevier, Amsterdam, pp 65–104CrossRefGoogle Scholar
  7. Brierley GJ, Ferguson R, Woolfe K (1997) What is a fluvial levee? Sediment Geol 114:1–9CrossRefGoogle Scholar
  8. Cas RAF, Wright JV (1987) Volcanic successions. Allen Unwin, London. pp 528CrossRefGoogle Scholar
  9. Chappell J, Eliot I, Bradshaw MP, Londsdale E (1979) Experimental control of beach face dynamics by water-table pumping. Engin Geol 14:29–41CrossRefGoogle Scholar
  10. Chen Y, Overeem I, Kettner A, Syvitski JPM, Gao S (2011) Controls of levee breaches on the Lower Yellow River during the years 1550–1855. River, Coastal and Estuarine Morphodynamics: REM 2011. Tsinghua University Press, 1–15. doi: 10.1002/2015JF003556
  11. Chen Y, Overeem I, Kettner A, Gao S, Syvitski JPM (2015) Modelling flood along the superelevated channel belt of the Yellow River over the last 3000 years. J Geophys Res: Earth Surface 120(7):1321–1351. doi: 10.1002/2015JF003556 CrossRefGoogle Scholar
  12. Colombo F, Riba O, Virgili C, Reguant S, Rivero L (2013) Anthropostratigraphy. New lithological units of the Quaternary controlled by human activity. J Iberian Geol 39:253–260Google Scholar
  13. Daniels JM (2008) Distinguishing allogenic from autogenic causes of bed elevation change in the late Quaternary alluvial stratigraphic records. Geomorph 101:159–171CrossRefGoogle Scholar
  14. Dey S (2014) Fluvial hydrodynamics. Hydrodynamic and Sediment Transport Phenomena. GeoPlanet. Earth and Planetary Sciences, Springer, pp 688. doi: 10.1007/978-3-642-1906-9
  15. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RPD, Greer, Sinun W (1999) The role of extreme events in the impacts of selective tropical forestry on erosion during harvesting and recovery phases at Danum Valley, Sabah. Philos Trans R Soc Lond 354:1749–1761CrossRefGoogle Scholar
  16. Einsele G (2000) Sedimentary basins: evolution, facies and sediment budget. Springer Verlag, Berlin, p 792CrossRefGoogle Scholar
  17. Enrique P (1979) Las rocas graníticas de la Cordillera Litoral Catalana entre Mataró y Barcelona. Acta Geol Hispanica 13 81–86Google Scholar
  18. Erhart H (1955) Biostasie et rhexistasie, esquisse d’une théorie sur le rôle de la pédogenèse en tant que phénomène géologique. C R Acad Sci, Paris 241 (28):1218–1220Google Scholar
  19. Erhart H (1956) La génese des sols, esquisse d’une théorie géologique et géochimique: biostasie et rhexistasie. Masson et Cie, Paris, p 90Google Scholar
  20. Feistel R, Weinreben S, Wolf H, Seitz S, Spitzer P, Adel B, Nausch G, Schneider B, Wright DG (2010) Density and absolute salinity in the Baltic Sea 2006–2009. Ocean. Science 6:3–24Google Scholar
  21. Forn F (2002) Entranyable riera. Llibres del Set-ciències. Arenys de Mar, pp 215Google Scholar
  22. Friedman JM, Osterkamp WR, Lewis WM (1996) The role of vegetation and bed-level fluctuations in the process of channel narrowing. Geomorph 14 (4):341–351CrossRefGoogle Scholar
  23. Gardner MH, Borer JM, Melick JJ, Mavilla N, Dechesne M, Wagerle RN (2003) Stratigraphic process—response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Mar Petrol Geol 20:757–787CrossRefGoogle Scholar
  24. Gerhard LC (2004) Climatic change: conflict of observational science theory politics. Am Assoc Petrol Geol Bull 88(9):353–374Google Scholar
  25. Gupta A (2007) Large rivers: geomorphology and management. Wiley, West Sussex, p 659CrossRefGoogle Scholar
  26. Gutiérrez-Camarós J (1992) Les rierades del Maresme: problemàtica de la interacció entre el medi natural i l’antròpic com a pas previ per a l’ordenació de l’espai torrencial. MSc Dissertation. Universitat de Barcelona, 167 ppGoogle Scholar
  27. Hesse R, Rakofsky A (1992) Deep-sea channel/submarine-Yazoo system of the Labrador Sea: new deep-water facies model. Am Assoc Petrol Geol Bull 76:680–707Google Scholar
  28. Hoogendoorn RM, Overeem I, Storms JEA (2008) Process—response modelling of fluvio—deltaic stratigraphy. Comput Geosci 34:1394–1416CrossRefGoogle Scholar
  29. Hooke RL (1967) Processes on arid-region alluvial fans. J Geol 75:438–460CrossRefGoogle Scholar
  30. Imran J, Parker G, Katapodes N (1998) A numerical model of channel inception on submarine fans. J Geophys Res 103:1219–1238CrossRefGoogle Scholar
  31. Jol HM (1995) Ground penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity. Geophys Prospect 43 693–709CrossRefGoogle Scholar
  32. Jol HM (ed) (2008) Ground penetrating radar. Theory and applications. Elsevier, Amsterdam, p 544Google Scholar
  33. Keevil GM, Peakall J, Best JL, Amos KJ (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229:241–257CrossRefGoogle Scholar
  34. Kelly SB, Olsen H (1993) Terminal fans—a review with reference to Devonian examples. Sediment Geol 85:339–374CrossRefGoogle Scholar
  35. Kneller B (2003) The influence of flow parameters on turbidite slope channel architecture. Mar Petrol Geol 20:901–910CrossRefGoogle Scholar
  36. Knigton A (2013) Fluid forms and processes: a new perspective. Routledge. pp 400Google Scholar
  37. Knox JC (1993) Large increases in flood magnitude in response to modest changes in climate. Nature 361:430–432CrossRefGoogle Scholar
  38. Knox JC (2001) Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley. Catena 42:193–224CrossRefGoogle Scholar
  39. Lamb MP, Parsons JD, Mullenbach BL, Finlayson DP, Orange DL, Nittrouer CA (2008) Evidence of superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California. Geol Soc Am Bull 120(3/4):463–475CrossRefGoogle Scholar
  40. Lane-Serff GF, Beal LM, Hadfield TD (1995) Gravity current flow over obstacles. J Fluid Mech 292:39–54CrossRefGoogle Scholar
  41. Leeder M (2011) Sedimentology and sedimentary basins: from turbulence to Tectonics. Wiley and Sons, Oxford, p 784Google Scholar
  42. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180CrossRefGoogle Scholar
  43. Llasat MC (1999) Pluges fortes i inundacions a la Mediterrània. Els projectes europeus “storm”, “floodware” i “sphere”, una aproximació al seu coneixement. Symposium sobre inundacions, Barcelona. p 8Google Scholar
  44. Llasat MC, Puigcerver M (1994) Meteorological factors associated with floods in the North-Eastern of Iberian Peninsula. Nat Haz 9:81–84CrossRefGoogle Scholar
  45. Llasat MC, Puigcerver M (1997) Total rainfall and convective rainfall in Catalonia, Spain. Int J Climatol 17:1683–1695CrossRefGoogle Scholar
  46. Llasat MC, Barriendos M, Barrera A (2005) Floods in Catalonia (NE Spain) since the 14th century: climatological and meteorological aspects from historical documentary sources and old instrumental records. J Hydrol 313:32–47CrossRefGoogle Scholar
  47. Llebot JE (2005) El sistema climàtic. In: Llebot JE (ed) Informe sobre el canvi climàtic. Consell Assessor per al Desenvolupament Sostenible, Generalitat de Catalunya, Barcelona. p 815Google Scholar
  48. Martín-Vide X (1985) Pluges i inundacions. Ed. Ketrés. Col·lecció Ventall 5, Barcelona. pp 132Google Scholar
  49. Miall A (1985) Architectural-Element Analysis: A new method of facies analysis applied to fluvial deposits. Earth Sci Rev 22:261–308CrossRefGoogle Scholar
  50. Miall A (1996) The Geology of Fluvial Deposits. Sedimentary Facies. Basin Analysis and Petroleum Geology. Springer, Berlin, p 582Google Scholar
  51. Milana JP (2010) The sieve lobe paradigm: Observations of active deposition. Geology 38:207–210CrossRefGoogle Scholar
  52. Mohrig D, Heller PL, Paola C, Lyons WJ (2000) Interpreting avulsion process from ancient alluvial sequences: Guadalupe-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geol Soc Am Bull 112(12):1787–1803CrossRefGoogle Scholar
  53. Montori C (2002) Sistema de drenaje de playas. Investigación y desarrollo. PhD Dissertation. Universitat de Barcelona, 322 ppGoogle Scholar
  54. North CP, Warwick GL (2007) Fluvial fans: Myths, Misconceptions and the End of the Terminal-Fan Model. J Sediment Res 77(9):693–701CrossRefGoogle Scholar
  55. Notebaert B, Berger JF (2014) Quantifying the anthropogenic forcing on soil erosion during the Iron Age and Roman Period in southeastern France. Anthropocene 8:59–69CrossRefGoogle Scholar
  56. Olivé J (1993) Les rieres del Pla de Barcelona a mitjan segle XIX. 12 Congrès d’ Història de Barcelona 2:399–408Google Scholar
  57. Paola C, Voller VR (2005) A generalized Exner equation for sediment mass balance. J Geophys Res 110/F04014. doi: 10.1029/2004JF000274 Google Scholar
  58. Parker G, Paola C, Whipple KX, Mohrig D, Toro-Escobar CM, Halverton M, Skoglung TW (1998) Alluvial fans formed by channelized fluvial and sheet flow. II: application. J Hydr Engin 124(10):996–1004CrossRefGoogle Scholar
  59. Peakall J, Amos KJ, Keevil GM, Bradbury PW, Gupta S (2007) Flow processes and sedimentation in submarine channel bends. Mar Petrol Geol 24:470–486CrossRefGoogle Scholar
  60. Pirmez C, Imran J (2003) Reconstructing turbidity currents in Amazon channel. Mar Petrol Geol 20:823–849CrossRefGoogle Scholar
  61. Pizutto JE (2006) Sediment diffusion during overbank flows. Sedimentology 34:301–317CrossRefGoogle Scholar
  62. Posamentier HW, Allen G (1993) Variability of the sequence stratigraphic model: effects of local basin factors. Sediment Geol 86:91–100CrossRefGoogle Scholar
  63. Riba O (1980) Geografia física dels Països Catalans. Ketres, Barcelona, p 226Google Scholar
  64. Riba O (1997) Les rieres del Maresme: consideracions sobre aspectes geomorfològics, hidrològics i sedimentològics. Quaderns d’Ecologia Aplicada 14:123–151Google Scholar
  65. Riba O, Colombo F (2009) Barcelona: la Ciutat Vella i el Poblenou. Assaig de geologia urbana. Institut d’Estudis Catalans (IEC). Barcelona, p 278Google Scholar
  66. Ribera JM (1945) Observaciones sobre el Cuaternario de la comarca del Maresme. Publicaciones del Instituto Geológico de la Diputación Provincial de Barcelona 7/1:213–293Google Scholar
  67. Riera S, Amat E (1994) Vegetation history and human activity during last 6000 years on the central Catalan coast (Northeastern Iberian Peninsula). Veg History Archeobotany 3:7–23Google Scholar
  68. Said R (2012) The geological evolution of the River Nile. Springer Verlag, Berlin, p 153Google Scholar
  69. Schumm SA (1977) The fluvial system. Wiley Interscience, New York, p 338Google Scholar
  70. Solé J, Delaloye M, Enrique P (1998) K-Ar ages in biotites and K-feldspars from the Catalan Coastal Batolith: evidence of a post-Hercynian overprinting. Eclogae Geol Helvet 91:139–148Google Scholar
  71. Syvitski JPM, Kettener A, Correggiari A, Nelson BW (2005) Distributary channels and their input in sediment dispersal. Mar Geol 222–223:75–94CrossRefGoogle Scholar
  72. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686CrossRefGoogle Scholar
  73. Témez JR (1991) Generalización y mejora del método racional. Ing Civ 82:51–56Google Scholar
  74. Tomás-Quevedo A (1963) Causas meteorológicas de las inundaciones de Septiembre de 1.962 en el bajo Vallés, Llano del Llobregat y la Maresma. Estudios Geográficos XXIV (91):137–146Google Scholar
  75. Vesterby H, Parks J (1988) Beach management with the Coastal Drain System. Florida Shore and Beach Preservation Assoc. Gainesville. p 88Google Scholar
  76. Vesterby H, Mangor K, Refsgaard A (1999) The beach drainage concept. Development of an engineering design tool. V International Conference on Coastal and Port Engineering in Developed Countries, Cape Town, 961–971Google Scholar
  77. Vesterby H, Mangor K, Refsgaard A (2000) Modelling groundwater flow in beach profiles for optimising stabilising measures. International Coastal Symposium Rotorua, New Zealand, p 7. doi:10.1.1.559.5511Google Scholar
  78. Weisman RN, Seidel GS, Ogden MR (1995) The effects of water table manipulation on beach profile. J Water Coast Ocean Engin 121(2):134–142CrossRefGoogle Scholar
  79. Wohl E (2015) Legacy effects on sediments in river corridors. Earth-Sci Rev 147:30–53CrossRefGoogle Scholar
  80. Yager E, Schmeeckle MW (2013) The influence of vegetation on turbulence and bed load transport. J Geophys Res Earth Surface 118:1585–1601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dept. Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la TerraUniversitat de BarcelonaBarcelonaSpain
  2. 2.Dept. Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la TerraUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations