Advertisement

International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2461–2471 | Cite as

Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

  • Manuel Martínez-Martos
  • Jesús Galindo-Zaldivar
  • Francisco José Martínez-Moreno
  • Raquel Calvo-Rayo
  • Carlos Sanz de Galdeano
Original Paper

Abstract

The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E–W, and the NW–SE oriented Gádor–Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N–S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E–W dextral faults. In this setting, NE–SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene–Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins’ deep structure and its relation with the tectonic structures interactions.

Keywords

Basin geometry Gravity prospecting Superimposed sedimentary basins Recent tectonic evolution 

Notes

Acknowledgements

We acknowledge the comments of Dr. Fernando Bohoyo and Dr. Antonio Pedrera that highly improved this research. This study was funded by the CGL2016-80687-R and the RNM148 research group of the Junta de Andalucía.

References

  1. Ayala C, Bohoyo F, Maestro A, Reguera MI, Torne M, Rubio F, Fernàndez M, García-Lobón JL (2016). Updated Bouguer anomalies of the Iberian Peninsula: a new perspective to interpret the regional geology. J Maps. doi: 10.1080/17445647.2015.1126538 Google Scholar
  2. Azañón JM, Galindo-Zaldivar J, García-Dueñas V, Jabaloy A (2002) Alpine tectonics II: Betic Cordillera and Balearic Islands. In: Gibbons W, Moreno T (eds) The geology of Spain, London, pp 401–416Google Scholar
  3. Braga JC, Martín JM, Quesada C (2003) Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50:3–26. doi: 10.1016/S0169-555X(02)00205-2 CrossRefGoogle Scholar
  4. Burg JP, Podladchikov Y (1999) Lithospheric scale folding: numerical modelling and application to the Himalayan syntaxes. Int J Earth Sci 88:190–200. doi: 10.1007/s005310050259 CrossRefGoogle Scholar
  5. Calvert A, Sandvol E, Seber D, Barazangi M, Roecker S, Mourabit T, Vidal F, Alguacil G, Jabour N (2000) Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: constraints from travel time tomography. J Geophys Res Solid Earth 105:10871–10898. doi: 10.1029/2000JB900024 CrossRefGoogle Scholar
  6. Carmignani L, Conti P, Cornamusini G, Meccheri M (2004) The internal Northern Apennines, the northern Tyrrhenian sea and the Sardinia-Corsica block. Geol Italy Spec Vol Ital Geol Soc IGC 32:59–77Google Scholar
  7. Do Couto D, Gumiaux C, Augier R, Lebret N, Folcher N, Jouannic G, Jolivet L, Suc JP, Gorini C (2014) Tectonic inversion of an asymmetric graben: insights from a combined field and gravity survey in the Sorbas basin. Tectonics 33:1360–1385. doi: 10.1002/2013TC003458 CrossRefGoogle Scholar
  8. Echeverria A, Khazaradze G, Asensio E, Gárate J, Dávila JM, Suriñach E (2013) Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics 608:600–612. doi: 10.1016/j.tecto.2013.08.020 CrossRefGoogle Scholar
  9. Galindo-Zaldivar J (1986) Etapas de fallamiento neógenas en la mitad occidental de la depresión de Ugijar (Cordilleras Béticas). Estud Geol 42:1–10. doi: 10.3989/egeol.86421731 CrossRefGoogle Scholar
  10. Galindo-Zaldivar J, Gil AJ, Sanz de Galdeano C, Lacy MC, García-Armenteros JA, Ruano P, Ruiz AM, Martínez-Martos M, Alfaro P (2015) Active shallow extension in central and eastern Betic Cordillera from CGPS data. Tectonophysics 663:290–301. doi: 10.1016/j.tecto.2015.08.035 CrossRefGoogle Scholar
  11. Galindo-Zaldívar J, Gil AJ, Borque MJ, González-Lodeiro F, Jabaloy A, Marín-Lechado C, Ruano P, Sanz de Galdeano C (2003) Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain). J Geodyn 36:239–250. doi: 10.1016/S0264-3707(03)00049-8 CrossRefGoogle Scholar
  12. García AF, Zhu Z, Ku TL, Sanz de Galdeano C, Chadwick OA, Montero JC (2003) Tectonically driven landscape development within the eastern Alpujarran Corridor, Betic cordillera, SE Spain (Almeria). Geomorphology 50:83–110. doi: 10.1016/S0169-555X(02)00209-X CrossRefGoogle Scholar
  13. García-Tortosa FJ, Sanz de Galdeano C (2007) Evidencias geomorfológicas de actividad tectónica cuaternaria en el frente montañoso del borde sur de Sierra Nevada: la falla normal de Laujar de Andarax. Cuaternario y geomorfología. Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario 21:101–112Google Scholar
  14. Giaconia F, Booth-Rea G, Martínez-Martínez JM, Azañón JM, Pérez-Peña JV, Pérez-Romero J, Villegas I (2012) Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology 145:90–106. doi: 10.1016/j.geomorph.2011.12.043 CrossRefGoogle Scholar
  15. Gonzalez-Castillo L, Galindo-Zaldivar J, de Lacy MC, Borque MJ, Martinez-Moreno FJ, García-Armenteros JA, Gil AJ (2015) Active rollback in the Gibraltar Arc: evidences from CGPS data in the western Betic Cordillera. Tectonophysics 663:310–321. doi: 10.1016/j.tecto.2015.03.010 CrossRefGoogle Scholar
  16. Guest B, Horton BK, Axen GJ, Hassanzadeh J, McIntosh WC (2007) Middle to late Cenozoic basin evolution in the western Alborz Mountains: implications for the onset of collisional deformation in northern Iran. Tectonics. doi: 10.1029/2006TC002091 Google Scholar
  17. Gurer A, Gürer ÖF, Pinçe A, Ilkisik OM (2001) Conductivity structure along the Gediz graben, west Anatolia, Turkey: tectonic implications. Int Geol Rev 43:1129–1144. doi: 10.1080/00206810109465065 CrossRefGoogle Scholar
  18. Instituto Geográfico Nacional, IGN (1976) Mapa de anomalías de Bouguer. Escala 1:500000. IGN, MadridGoogle Scholar
  19. Jabaloy A, Galindo-Zaldivar J, González-Lodeiro F (1993) The Alpujárride-Nevado-Fibábride extensional shear zone, Betic Cordillera, SE Spain. J Struct Geol 15:555–569. doi: 10.1016/0191-8141(93)90148-4 CrossRefGoogle Scholar
  20. Jacobs J, Thomas RJ (2004) Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African–Antarctic orogen. Geology 32:721–724. doi: 10.1130/G20516.1 CrossRefGoogle Scholar
  21. Kane MF (1962) A comprehensive system of terrain corrections using a digital computer. Geophysics 27:455–462. doi: 10.1190/1.1439044 CrossRefGoogle Scholar
  22. Kleverlaan K (1987) Gordo megabed: a possible seismite in a Tortonian submarine fan, Tabernas basin, Province Almeria, southeast Spain. Sediment Geol 51:165–180. doi: 10.1016/0037-0738(87)90047-9 CrossRefGoogle Scholar
  23. Kleverlaan K (1989) Three distinctive feeder-lobe systems within one time slice of the Tortonian Tabernas fan, SE Spain. Sedimentology 36:25–45. doi: 10.1111/j.1365-3091.1989.tb00818.x CrossRefGoogle Scholar
  24. Li Q, Ruano P, Pedrera-Parias A, Galindo-Zaldivar J (2012) Estructura de la cuenca sedimentaria de Tabernas-Sorbas mediante prospección gravimétrica y magnética (Zonas Internas, Cordillera Bética Oriental). Geogaceta 52:117–120Google Scholar
  25. Mancilla FdL, Stich D, Berrocoso M, Martín R, Morales J, Fernandez-Ros A, Páez R, Pérez-Peña A (2013) Delamination in the Betic range: deep structure, seismicity, and GPS motion. Geology 41:307–310. doi: 10.1130/G33733.1 CrossRefGoogle Scholar
  26. Marín-Lechado C, Galindo-Zaldivar J, Rodríguez-Fernández LR, Serrano I, Pedrera A (2005) Active faults, seismicity and stresses in an internal boundary of a tectonic arc (Campo de Dalías and Níjar, southeastern Betic Cordilleras, Spain). Tectonophysics 396:81–96. doi: 10.1016/j.tecto.2004.11.001 CrossRefGoogle Scholar
  27. Marín-Lechado C, Galindo-Zaldivar J, Rodríguez-Fernández LR, Pedrera A (2007) Mountain front development by folding and crustal thickening in the Internal Zone of the Betic Cordillera-Alboran Sea boundary. Pure Appl Geophys 164:1–21. doi: 10.1007/s00024-006-0157-4 CrossRefGoogle Scholar
  28. Martín J, Braga JC (1994) Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sediment Geol 90:257–268. doi: 10.1016/0037-0738(94)90042-6 CrossRefGoogle Scholar
  29. Martín-Algarra A, Mazzoli S, Perrone V, Rodríguez-Cañero R, Navas-Parejo P (2009) Variscan tectonics in the Malaguide Complex (Betic Cordillera, southern Spain): stratigraphic and structural Alpine versus pre-Alpine constraints from the Ardales area (Province of Malaga). I. Stratigraphy. J Geol 117:241–262. doi: 10.1086/597364 CrossRefGoogle Scholar
  30. Martínez-Díaz JJ (2000) Actividad neotectónica en el sureste de Almería y su incidencia en la morfotectónica de la zona (Cordilleras Béticas). Rev Soc Geol España 13:417–429Google Scholar
  31. Martínez-Díaz JJ, Hernández-Enrile JL (2004) Neotectonics and morphotectonics of the southern Almería region (Betic Cordillera-Spain) kinematic implications. Int J Earth Sci 93:189–206. doi: 10.1007/s00531-003-0379-y CrossRefGoogle Scholar
  32. Martínez-Martínez JM (2006) Lateral interaction between metamorphic core complexes and less-extended, tilt-block domains: the Alpujarras strike-slip transfer fault zone (Betics, SE Spain). J Struct Geol 28:602–620. doi: 10.1016/j.jsg.2006.01.012 CrossRefGoogle Scholar
  33. Martínez-Martínez JM, Booth-Rea G, Azañón JM, Torcal F (2006) Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination. Tectonophysics 422:159–173. doi: 10.1016/j.tecto.2006.06.001 CrossRefGoogle Scholar
  34. Martínez-Moreno FJ, Galindo-Zaldivar J, Pedrera A, Teixidó T, Peña JA González-Castillo L (2015) Regional and residual anomaly separation in microgravity maps for cave detection: the case study of Gruta de las Maravillas (SW Spain). J Appl Geophys 114:1–11. doi: 10.1016/j.jappgeo.2015.01.001 CrossRefGoogle Scholar
  35. Martínez-Moreno FJ, Galindo-Zaldívar J, González-Castillo L, Azañón JM (2016) Collapse susceptibility map in abandoned mining areas by microgravity survey: a case study in Candado hill (Málaga, southern Spain). J Appl Geophys 130:101–109. doi: 10.1016/j.jappgeo.2016.04.017 CrossRefGoogle Scholar
  36. Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371. doi: 10.1190/1.1439779 CrossRefGoogle Scholar
  37. Pedley RC, Busby JP, Dabek ZK (1993) GRAVMAG user manual–interactive 2.5 D gravity and magnetic modelling. British Geological Survey, Technical Report WK/93/26/R. 73Google Scholar
  38. Pedrera A, Marín-Lechado C, Galindo-Zaldivar J, Rodríguez-Fernández LR, Ruiz-Constán A (2006) Fault and fold interaction during the development of the Neogene-Quaternary Almería-Níjar basin (SE Betic Cordilleras), vol 262. Geological Society, London, Special Publications, London, pp 217–230. doi: 10.1144/GSL.SP.2006.262.01.13 Google Scholar
  39. Pedrera A, Galindo-Zaldívar J, Sanz de Galdeano C, López-Garrido AC (2007) Fold and fault interactions during the development of an elongated narrow basin: the Almanzora Neogene-Quaternary Corridor (SE Betic Cordillera, Spain). Tectonics. doi: 10.1029/2007TC002138 Google Scholar
  40. Pedrera A, Galindo-Zaldívar J, Ruiz-Constán A, Duque C, Marín-Lechado C, Serrano I (2009) Recent large fold nucleation in the upper crust: insight from gravity, magnetic, magnetotelluric and seismicity data (Sierra de Los Filabres–Sierra de Las Estancias, Internal Zones, Betic Cordillera). Tectonophysics 463:145–160. doi: 10.1016/j.tecto.2008.11.018 CrossRefGoogle Scholar
  41. Pedrera A, Galindo-Zaldívar J, Marín-Lechado C, García-Tortosa FJ, Ruano P, Garrido AL, Azañón JM, Peláez JA, Giaconia, F (2012) Recent and active faults and folds in the central-eastern Internal Zones of the Betic Cordillera/Las fallas y pliegues recientes y activos de la parte centro-oriental de las Zonas Internas de la Cordillera Bética. J Iber Geol. doi: 10.5209/rev_JIGE.2012v38.n1.39213 Google Scholar
  42. Rodríguez-Fernández J, Sanz de Galdeano C, Serrano F (1990) Le couloir des Alpujarras. In: Montenat C (ed) Les bassins Néogènes du Domaine Bétique Oriental (Espagne), Doc. Trav. IGAL, Paris, pp 87–100Google Scholar
  43. Ruegg GJH (1964) Geologische onderzoekingen in het bekken van Sorbas, S Spanje. Amsterdam Geological Institut, University of AmsterdamGoogle Scholar
  44. Ruiz Constán A, Galindo-Zaldivar J, Martínez MA, Martínez-Martos M, Pedrera-Parias A (2013) Estructura de la Cuenca de Ugíjar a partir de datos gravimétricos y magnéticos (Zonas Internas, Cordillera Bética Central). Geogaceta 54:95–98Google Scholar
  45. Ruiz-Constán A, Galindo-Zaldívar J, Pedrera A, Celerier B, Marín-Lechado C (2011) Stress distribution at the transition from subduction to continental collision (northwestern and central Betic Cordillera). Geochem Geophys Geosyst. doi: 10.1029/2011GC003824 Google Scholar
  46. Ruiz-Constán A, Pedrera A, Galindo-Zaldivar J, Pous J, Arzate J, Roldán-García FJ, Marín-Lechado J, Anahnah F (2012) Constraints on the frontal crustal structure of a continental collision from an integrated geophysical research: the central-western Betic Cordillera (SW Spain). Geochem Geophys Geosyst. doi: 10.1029/2012GC004153 Google Scholar
  47. Sanz de Galdeano C (1989) Las fallas de desgarre del borde Sur de la cuenca de Sorbas-Tabernas (Norte de Sierra Alhamilla, Almería, Cordilleras Béticas). Boletín Geológico y Minero 100:73–85Google Scholar
  48. Sanz de Galdeano C (1996) The EW segments of the contact between the External and Internal Zones of the Betic and Rif Cordilleras and the EW corridors of the Internal Zone (a combined explanation). Estud Geol 52:123–136CrossRefGoogle Scholar
  49. Sanz de Galdeano C, Alfaro P (2004) Tectonic significance of the present relief of the Betic Cordillera. Geomorphology 63:175–190. doi: 10.1016/j.geomorph.2004.04.002 CrossRefGoogle Scholar
  50. Sanz de Galdeano C, Vera JA (1991) Una propuesta de clasificación de las cuencas neógenas béticas. Acta Geológica Hispánica 26:205–227Google Scholar
  51. Sanz de Galdeano C, Vera JA (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res 4:21–36. doi: 10.1111/j.1365-2117.1992.tb00040.x CrossRefGoogle Scholar
  52. Sanz de Galdeano C, Rodriguez-Fernandez J, López-Garrido AC (1985) A strike-slip fault corridor within the Alpujarra Mountains (Betic Cordilleras, Spain). Geol Rundsch 74:641–655. doi: 10.1007/BF01821218 CrossRefGoogle Scholar
  53. Sanz de Galdeano C, Galindo-Zaldivar J, Morales S, López-Chicano M, Azañón JM, Martín-Rosales W (2008) Travertinos ligados a fallas: ejemplos del desierto de Tabernas (Almería, Cordillera Bética). Geogaceta 45:31–34Google Scholar
  54. Sanz de Galdeano C, Shanov S, Galindo-Zaldivar J, Radulov A, Nikolov G (2010) A new tectonic discontinuity in the Betic Cordillera deduced from active tectonics and seismicity in the Tabernas Basin. J Geodyn 50:57–66. doi: 10.1016/j.jog.2010.02.005 CrossRefGoogle Scholar
  55. Soria JM (1998) La Cuenca de Antepaís Norbética en la Cordillera Bética Central (sector del Mencal): evolución tectosedimentaria e historia de la subsidencia. Rev Soc Geol España 11:23–31Google Scholar
  56. Tarı U, Tüysüz O, Can Genç Ş, İmren C, Blackwell BA, Lom N, Tekeşin Ö, Üsküplü S, Erel L, Atiok S, Beyhan M (2013) The geology and morphology of the Antakya Graben between the Amik Triple Junction and the Cyprus Arc. Geodin Acta 26:27–55. doi: 10.1080/09853111.2013.858962 CrossRefGoogle Scholar
  57. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Torné M, Banda E (1992) Crustal thinning from the Betic Cordillera to the Alboran Sea. Geo-Mar Lett 12:76–81. doi: 10.1007/BF02084915 CrossRefGoogle Scholar
  59. Vera JA (2000) El Terciario de la Cordillera Bética: estado actual de conocimientos. Rev Soc Geol España 13:345–373Google Scholar
  60. Weijermars R, Roep TB, Eeckhout B, Postma G, Kleverlaan K (2007) Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almeria, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain). Geol Mijnbouw 64:345–373Google Scholar
  61. Yilmaz M, Gelisli K (2003) Stratigraphic–structural interpretation and hydrocarbon potential of the Alaşehir Graben, western Turkey. Pet Geosci 9:277–282. doi: 10.1144/1354-079302-539 CrossRefGoogle Scholar
  62. Zagorčev IS (1992) Neotectonics of the central parts of the Balkan Peninsula: basic features and concepts. Geol Rundsch 81:635–654. doi: 10.1007/BF01791382 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Manuel Martínez-Martos
    • 1
    • 2
  • Jesús Galindo-Zaldivar
    • 1
    • 2
  • Francisco José Martínez-Moreno
    • 3
  • Raquel Calvo-Rayo
    • 1
  • Carlos Sanz de Galdeano
    • 2
  1. 1.Departamento de GeodinámicaUniversidad de GranadaGranadaSpain
  2. 2.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaArmillaSpain
  3. 3.Faculdade de CiênciasIDL-Universidade de LisboaLisbonPortugal

Personalised recommendations