Advertisement

International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2445–2459 | Cite as

First U–Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications

  • Atnisha Abubaker
  • Mandy Hofmann
  • Andreas Gärtner
  • Ulf Linnemann
  • Olaf Elicki
Original Paper

Abstract

LA-ICP-MS U–Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U–Pb ages fall into three groups: 2.8–2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3–1.6 Ga (46%), early to late Palaeoproterozoic; 1.0–0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2–1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2–1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th–U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.

Keywords

Saxo-Thuringia Torgau-Doberlug Syncline West African Craton Cambrian Zircon geochronology Provenance 

Notes

Acknowledgements

The authors greatly acknowledge the Libyan Government represented by the Higher Education Section and the Department of Palaeontology of the TU Bergakademie Freiberg, Germany, for granting the leading author. Many thanks goes to the Brandenburg State Office for Mining, Geology and Raw Materials (LBGR) for providing the drilling cores and allowance for investigation, as well as to Michael Göthel (LBGR) for important discussions, extensive logistic help and core data. The authors are grateful to the scientific staff of the Department of Tectonophysics (TU Bergakademie Freiberg) for discussion on heavy-mineral microscopy and preparation. The authors would like to thank technicians at Senckenberg Naturhistorische Sammlungen Dresden for their help.

Supplementary material

531_2016_1440_MOESM1_ESM.xlsx (51 kb)
Supplementary material 1 (XLSX 51 KB)
531_2016_1440_MOESM2_ESM.xlsx (55 kb)
Supplementary material 2 (XLSX 54 KB)
531_2016_1440_MOESM3_ESM.xlsx (52 kb)
Supplementary material 3 (XLSX 51 KB)

References

  1. Bahlburg H, Vervoort JD, DuFrane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany-U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235CrossRefGoogle Scholar
  2. Brause H (1969) Das verdeckte Altpaläozoikum der Lausitz und seine regionale Stellung. Abhandlungen der Deutschen Akademie der Wissenschaften Berlin, Klasse für Bergbau, Hüttenwesen und Montangeologie 1968:1–143Google Scholar
  3. Brause H (1970) Ein neuer wichtiger Aufschluß im Kambrium von Doberlug–Kirchhain. Geologie 19:1048–1065Google Scholar
  4. Brause H, Elicki O (1997) Kambrium. In: Stratigraphische kommission Deutschlands (ed) Stratigraphie von Deutschland II. Ordovizium, Kambrium, Vendium, Riphäikum, Teil I. Courier Forschungsinstitut Senckenberg 200:308–322Google Scholar
  5. Buschmann B (1990) Mikrofazielle untersuchungen der kieselgesteinsfolge der Rothstein-Schichten (Jungproterzoikum). Diploma Thesis. Bergakademie Freiberg, GermanyGoogle Scholar
  6. Buschmann B (1995) Tectonic facies analysis of the Rothstein formation (Neoproterozoic, Saxothuringian Zone, E Germany). Unpublished Ph. D. thesis, TU Bergakademie FreibergGoogle Scholar
  7. Buschmann B, Linnemann U, Schneider J, Süß T (1995) Die cadomische Entwicklung im Untergrund der Torgau–Doberluger Synklinale. Zeitschrift für Geologische Wissenschaften 23:729–749Google Scholar
  8. Buschmann B, Nasdala L, Jonas P, Linnemann U, Gehmlich M (2001) SHRIMP U–Pb dating of tuff-derived and detrital zircons from Cadomian marginal basin fragments (Neoproterozoic) in the northeastern Saxothuringian Zone (Germany). Neues Jahrbuch Geologie für und Paläontologie, Monatshefte 2001:321–342Google Scholar
  9. Buschmann B, Elicki O, Jonas P (2006) The Cadomian unconformity in the Saxo-Thuringian Zone, Germany: Palaeogeographic affinities of Ediacaran (terminal Neoproterozoic) and Cambrian strata. Precambrian Res 147:387–403CrossRefGoogle Scholar
  10. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (ed) Zircon:reviews in mineralogy and geochemistry, vol 53, pp 468–500Google Scholar
  11. Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of neoproterozoic and early siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231CrossRefGoogle Scholar
  12. Elicki O (1994) Lower Cambrian carbonates from eastern Germany: palaeontology, stratigraphy and palaeogeography. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 191(1):69–93Google Scholar
  13. Elicki O (1997) Biostratigraphic data of the German Cambrian – present state of knowledge. Paläontologie, Stratigraphie, Fazies 4. Freiberger Forschungshefte C 466:155–165Google Scholar
  14. Elicki O (1999) Beitrag zur Lithofazies und zur Lithostratigraphie im Unterkambrium von Doberlug-Torgau. Paläontologie, Stratigraphie, Fazies 7. Freiberger Forschungshefte C 481:107–119Google Scholar
  15. Elicki O (2003) Das Kambrium Sachsens. Veröffentlichungen des Museums für Naturkunde Chemnitz 26:41–62Google Scholar
  16. Elicki O (2015) Kambrium. In: Stackebrand W, Franke DP (Hrsg.), Geologie von Brandenburg. E. Schweizerbart’sche Verlagsbuchhandlung: 51–59Google Scholar
  17. Elicki O, Wotte T (2003) Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves. Palaeogeogr Palaeoclimatol Palaeoecol 195:55–71CrossRefGoogle Scholar
  18. Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270CrossRefGoogle Scholar
  19. Freyer G, Suhr P (1987) Über Archaeocyathinen-Funde und den lithologischen Aufbau des Unterkambriums im Gebiet von Torgau. Zeitschrift für Geologische Wissenschaften 15:655–680Google Scholar
  20. Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28:1035–1038CrossRefGoogle Scholar
  21. Gärtner A, Villeneuve M, Linnemann U, Gerdes A, Youbi N, Guillou O, Rjimati E (2014) History of the West African Neoproterozoic Ocean: key to the geotectonic history of circum-Atlantic Peri-Gondwana (Adrar Souttouf Massif, Moroccan Sahara). Gondwana Res 29:220–233CrossRefGoogle Scholar
  22. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61CrossRefGoogle Scholar
  23. Geyer G, Landing E (2004) A unified Lower–Middle Cambrian chronostratigraphy for west Gondwana. Acta Geol Pol 54:179–218Google Scholar
  24. Geyer G, Buschmann B, Elicki O (2014) A new lowermost middle Cambrian (Series 3, Stage 5) faunule from Saxony (Germany) and its bearing on the tectonostratigraphic history of the Saxothuringian domain. Paläontologische Zeitschrift 88:239–262CrossRefGoogle Scholar
  25. Hirdes W, Davis DW (2002) U–Pb geochronology of Paleoproterozoic rocks in the southern part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: evidence for diachronous accretionary development of the Eburnean Province. Precambrian Res 118:83–99CrossRefGoogle Scholar
  26. Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-Th-Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostand Geoanalytical Res 40:311–332CrossRefGoogle Scholar
  27. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in Mineralogy and Geochemistry, vol 53, pp 27–62Google Scholar
  28. Jeffries TE, Fernández Suárez J, Corfu F, Gutiérrez Alonso G (2003) Advances in U–Pb geochronology using frequency quintupled Nd: YAG based laser ablation system (lambda = 213 nm) and quadrupole based ICP-MS. J Anal At Spectrom 18:847–855CrossRefGoogle Scholar
  29. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues: Abhandlungen des Sächsischen Geologischen Landesamtes 1:1–39Google Scholar
  30. Linnemann U (2007) Ediacaran rocks from the Cadomian basement of the Saxo Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development. Geol Soc Lond Spec Publ 286:35–51CrossRefGoogle Scholar
  31. Linnemann U, Buschmann B (1995) Die cadomische Diskordanz im Saxothuringikum (oberkambrisch-tremadocische overlap-Sequenzen). Zeitschrift für Geologische Wissenschaften 23:707–727Google Scholar
  32. Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuriniga, Germany: geochemical and Nd-Sr-Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64CrossRefGoogle Scholar
  33. Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lutzner H, Bombach K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak, V, Oncken O, Tanner D. (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society Special Publication 179:1–153Google Scholar
  34. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? -U–Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci (Geol Rundsch) 93:683–705CrossRefGoogle Scholar
  35. Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICPMS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, north-eastern Bohemian Massif, Germany). In: Linnemann U, Nance DR, Kraft P, Zulauf G. (ed) The evolution of the Rheic Ocean: from Avalonian Cadomian Active margin to Alleghenian-Variscan Collision: Geological Society of America, Special paper, vol 423, pp 61–96Google Scholar
  36. Linnemann U, D’Lemos RS, Drost K, Jeffries TE, Romer RL, Samson SD, Strachan RA (2008) Cadomian tectonics. In: McCann T. (ed) The Geology of Central Europe, Volume 1-Precambrian and Paleozoic. Geological Society, London, pp 103–154Google Scholar
  37. Linnemann U, Hofmann M, Romer RL, Gerdes A (2010) Transitional stages between the Cadomian and Variscan Orogenies: Basin development and tectonomagmatic evolution of the southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf). In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia-From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart Science Publishers, Stuttgart, pp 59–98Google Scholar
  38. Linnemann U, Ouzegane K, Drareni A, Hofmann M, Becker S, Gärtner A, Sagawe A (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions -a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb LA-ICP-MS detrital zircon ages. Lithos 123:188–203CrossRefGoogle Scholar
  39. Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton-Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278CrossRefGoogle Scholar
  40. Ludwig KR (2001) User manual for Isoplot/Ex rev. 2.49: Berkeley geochronology center special publication 1a, pp 1–56Google Scholar
  41. Mazur S, Turniak K, Szczepański J, McNaughton NJ (2015) Vestiges of Saxothuringian crust in the Central Sudetes, Bohemian Massif: zircon evidence of a recycled subducted slab provenance. Gondwana Res 27:825–839CrossRefGoogle Scholar
  42. Murphy JB, Strachan RA, Nance RD, Parker KD, Fowler MB (2000) Proto-Avalonia: A 1.2–1.0 Ga tectonothermal event and constraints for the evolution of Rodinia. Geology 28:1071–1074CrossRefGoogle Scholar
  43. Nance RD, Murphy JB (1994) Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22(7):617–620CrossRefGoogle Scholar
  44. Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’lemos R, Sergei A, Pisarevsky SA (2008) Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. In: Ennih, N. Liégeois, J.-P. (eds) The boundaries of the West African Craton: Geological Society, vol 297, London, Special Publications, pp 345–383Google Scholar
  45. Oliveira EP, McNaughton NJ, Windley BF, Carvalho MJ, Nascimento RS (2015) Detrital zircon U–Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: from early passive margins to late foreland basins. Tectonophysics 662:183–194CrossRefGoogle Scholar
  46. Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African Craton. In: Dallmeyer RD, Lecorche JP (eds) The West African Orogens and Circum—Atlantic Correlatives. Springer, Berlin, pp 31–61CrossRefGoogle Scholar
  47. Sagawe A, Gärtner A, Linnemann U, Hofmann M, Gerdes A (2016) Exotic crustal components at the northern margin of the Bohemian Massif—implications from U-Th-Pb and Hf isotopes of zircon from the Saxonian Granulite Massif. Tectonophysics 681:234–249CrossRefGoogle Scholar
  48. Sircombe KN (2004) AGEDISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30:21–31CrossRefGoogle Scholar
  49. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon - a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  50. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  51. Stern RJ (2008) Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history. Gondwana Res 14(1–2):33–50CrossRefGoogle Scholar
  52. Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598CrossRefGoogle Scholar
  53. van der Voo R (1979) Paleozoic assembly of Pangea: a new plate tectonic model for the Taconic, Caledonian and Hercynian orogenies. EOS Trans Am Geophys Union 60:241Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Atnisha Abubaker
    • 1
  • Mandy Hofmann
    • 2
  • Andreas Gärtner
    • 2
  • Ulf Linnemann
    • 2
  • Olaf Elicki
    • 1
  1. 1.Department of PalaeontologyTU Bergakademie FreibergFreibergGermany
  2. 2.Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, GeoPlasma LabDresdenGermany

Personalised recommendations