International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2407–2427 | Cite as

Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil

Original Paper


The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P–T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.


Brasília Orogen High-pressure granulite Inverted metamorphism Metamorphic field gradient Monazite dating Exhumation model 



This work was financially supported by the São Paulo Research Foundation-FAPESP (Grant 04/09682-8 and 13/04007-0). R. G. Motta is thankful to the National Counsel of Technological and Scientific Development-CNPq for the scholarship. The authors thank Marcos Mansueto for his help at the Microprobe Laboratory of Geosciences Institute-São Paulo University (USP) and Dr. Lucelene Martins for her help with the monazite analyses. Careful review of an earlier draft of this manuscript was conducted by Rebecca Jamieson, which greatly improved the final version.

Supplementary material

531_2016_1436_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 12 KB)


  1. Andreasson PG, Lagerblad B (1980) Occurrence and significance of inverted metamorphic gradients in the western Scandinavian Caledonides. J Geol Soc Lond 137:219–230. doi: 10.1144/gsjgs.137.3.0219 CrossRefGoogle Scholar
  2. Barbey P (2007) Diffusion-controlled biotite breakdown reaction textures at the solid/liquid transition in the continental crust. Contrib Miner Petrol 154:707–716. doi: 10.1007/s00410-007-0220-x CrossRefGoogle Scholar
  3. Beaumont C, Nguyen MH, Jamieson RA, Ellis S (2006) Crustal flow modes in large hot orogens. Geol Soc Lond Spec Publ 268:91–145. doi: 10.1144/GSL.SP.2006.268.01.05 CrossRefGoogle Scholar
  4. Bohlen SR, Wall VJ, Boettcher AL (1983) Experimental investigations and geological applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O. Am Miner 68:1049–1058Google Scholar
  5. Campos Neto MC, Caby R (1999) Neoproterozoic high-pressure metamorphism and tectonic constraint from the nappe system south of the São Francisco Craton, southeast Brazil. Precambrian Res 97:3–26CrossRefGoogle Scholar
  6. Campos Neto MC, Caby R (2000) Terrane accretion and upward extrusion of high-pressure granulites in the Neoproterozoic nappes of southeast Brazil: petrologic and structural constraints. Tectonics 19:669–687CrossRefGoogle Scholar
  7. Campos Neto MC, Basei MAS, Vlach SRF, Caby R, Szabó GAJ, Vasconcelos P (2004) Migração de orógenos e superposição de orogêneses: um esboço da Colagem Brasiliana no sul do Cráton São Francisco, SE-Brasil. Geol USP Sér Cie 4:13–40CrossRefGoogle Scholar
  8. Campos Neto MC, Basei MAS, Janasi VA, Siga Jr. O, Cordani UG (2005) O Grupo Andrelândia no Sistema de Nappes Andrelândia Oriental. In: SBG (ed) Simpósio Sobre o Cráton do São Francisco. Salvador, pp 143–146Google Scholar
  9. Campos Neto MC, Janasi VA, Basei MAS, Siga Jr. O (2007) Sistema de nappes Andrelândia, setor oriental: litoestratigrafia e posição estratigráfica. Rev Bras Geociê 37:47–60Google Scholar
  10. Campos Neto MC, Cioffi CR, Moraes R, Motta RG, Siga O Jr, Basei MAS (2010) Structural and metamorphic control on the exhumation of high-P granulites: the Carvalhos Klippe example, from the oriental Andrelândia Nappe System, southern portion of the Brasília Orogen, Brazil. Precambrian Res 180:125–142. doi: 10.1016/j.precamres.2010.05.010 CrossRefGoogle Scholar
  11. Cioffi CR, Campos Neto MC, Rocha BC, Moraes R, Henrique-Pinto R (2012) Geochemical signatures of metasedimentary rocks of high-pressure granulite facies and their relation with partial melting: Carvalhos Klippe, Southern Brasília Belt, Brazil. J South Am Earth Sci 40:63–76. doi: 10.1016/j.jsames.2012.09.007 CrossRefGoogle Scholar
  12. Cioffi CR, Campos Neto MC, Moller A, Rocha BC (2016) Paleoproterozoic continental crust generation events at 2.15 and 2.08 Ga in the basement of the southern Brasília Orogen, SE Brazil. Precambrian Res 275:176–196. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  13. Fraser G, Worley B, Sandiford M (2000) High-precision geothermobarometry across the high Himalayan metamorphic sequence, Langtang Valley, Nepal. J Metamorph Geol 18:665–681. doi: 10.1046/j.1525-1314.2000.00283.x CrossRefGoogle Scholar
  14. Garcia MGM, Campos Neto MC (2003) Contrasting metamorphic conditions in the Neoproterozoic collision-related Nappes south of São Francisco Craton, SE Brazil. J South Am Earth Sci 15:853–870CrossRefGoogle Scholar
  15. Garcia MGM, Campos Neto MC, Fallick AE (2003) Oxygen isotope composition and geothermometry of granulite to greenschist facies metamorphic rocks: a study from the Neoproterozoic collision-related nappe system, south of São Francisco Craton, SE Brazil. J South Am Earth Sci 15:871–883CrossRefGoogle Scholar
  16. Gibson HD, Brown RL, Parrish RR (1999) Deformation-induced inverted metamorphic field gradients: an example from the southeastern Canadian Cordillera. J Struct Geol 21:751–767. doi: 10.1016/S0191-8141(99)00051-6 CrossRefGoogle Scholar
  17. Godin L, Grujic D, Law RD, Searle MP (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. Geol Soc Lond Spec Publ 268:1–23. doi: 10.1144/GSL.SP.2006.268.01.01 CrossRefGoogle Scholar
  18. Green DH, Lambert IB (1965) Experimental crystallization of anhydrous granite at high pressures and temperatures. J Geophys Res 70:5259–5268. doi: 10.1029/JZ070i020p05259 CrossRefGoogle Scholar
  19. Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Miner Petrol 15:103–190. doi: 10.1007/BF00372052 CrossRefGoogle Scholar
  20. Harrison TM, Grove M, Lovera OM, Catlos EJ, D’Andrea J (1999) The origin of Himalayan anatexis and inverted metamorphism: models and constraints. J Asian Earth Sci 17:755–772. doi: 10.1016/S1367-9120(99)00018-8 CrossRefGoogle Scholar
  21. Heilbron M, Pedrosa-Soares AC, Campos Neto MC, Silva LC, Trouw RAJ, Janasi VA (2004) Província Mantiqueira. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito Neves BB (eds) Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida. Beca, São Paulo, pp 204–234Google Scholar
  22. Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan–Tibetan orogen. J Geophys Res 109:1–24. doi: 10.1029/2003JB002811 CrossRefGoogle Scholar
  23. Jamieson RA, Beaumont C, Nguyen MH, Culshaw NG (2007) Synconvergent ductile flow in variable-strength continental crust: numerical models with application to the western Grenville orogen. Tectonics 26:1–23. doi: 10.1029/2006TC002036 CrossRefGoogle Scholar
  24. Jamieson RA, Beaumont C, Warren CJ, Nguyen M (2010) The Grenville Orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data. Can J Earth Sci 47:517–539. doi: 10.1139/E09-070 CrossRefGoogle Scholar
  25. Jamieson RA, Unsworth MJ, Harris NBW, Rosenberg CL, Schulmann K (2011) Crustal melting and the flow of mountains. Elements 7:253–260. doi: 10.2113/gselements.7.4.253 CrossRefGoogle Scholar
  26. Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279Google Scholar
  27. Ludwig KR (2003) Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, Berkeley, 70 pGoogle Scholar
  28. Martinez RB (2015) Avaliação de métodos para cálculo e inferência de condições P–T em rochas da fácies granulito: Investigação das rochas das Nappes Três Pontas-Varginha e Socorro-Guaxupé. Dissertation, Universidade de São PauloGoogle Scholar
  29. Martins L, Vlach SRF, Janasi VA (2009) Reaction microtextures of monazite: Correlation between chemical and age domains in the Nazaré Paulista migmatite, SE Brazil. Chem Geol 261:271–285. doi: 10.1016/j.chemgeo.2008.09.020 CrossRefGoogle Scholar
  30. Motta RG, Moraes R, Trouw RAJ, Campos Neto MC (2010) Reconstrução e comparação de trajetórias P–T no Sistema de Nappes Andrelândia, Sul da Faixa Brasília, MG. Geol USP Sér Cie 10:79–96CrossRefGoogle Scholar
  31. Mottram CM, Warren CJ, Regis D, Roberts NMW, Harris NBW, Argles TW, Parrish RR (2014) Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet Sci Lett 403:418–431. doi: 10.1016/j.epsl.2014.07.006 CrossRefGoogle Scholar
  32. O’Brien PJ, Rotzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20. doi: 10.1046/j.1525-1314.2003.00420.x CrossRefGoogle Scholar
  33. Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican massif, France). J Metamorph Geol 28:183–208. doi: 10.1111/j.1525-1314.2009.00862.x CrossRefGoogle Scholar
  34. Powell R, Holland T (1990) Calculated mineral equilibria in the pelite system, KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O). Am Miner 75:367–380Google Scholar
  35. Powell R, Holland T (1994) Optimal geothermometry and geobarometry. Am Miner 79:120–133Google Scholar
  36. Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588. doi: 10.1111/j.1525-1314.1998.00157.x CrossRefGoogle Scholar
  37. Reno BL, Piccoli PM, Brown M, Trouw RAJ (2012) In situ monazite (U–Th)–Pb ages from the Southern Brasília Belt, Brazil: constraints on the high-temperature retrograde evolution of HP granulites. J Metamorph Geol 30:81–112. doi: 10.1111/j.1525-1314.2011.00957.x CrossRefGoogle Scholar
  38. Santos LP, Campos Neto MC, Grohmann CH (2004) Metamorphic path constrained by metapelitic rocks from the inner Aiuruoca-Andrelândia nappe, south of the São Francisco craton, SE Brazil. J South Am Earth Sci 16:725–741. doi: 10.1016/j.jsames.2003.12.006 CrossRefGoogle Scholar
  39. Sawyer EW (2008) Atlas of migmatites, 9th edn. NRC Research Press, OttawaGoogle Scholar
  40. Searle MP, Rex AJ (1989) Thermal model for the Zanskar Himalaya. J Metamorph Geol 7:127–134. doi: 10.1111/j.1525-1314.1989.tb00579.x CrossRefGoogle Scholar
  41. Simões LSA, Valeriano CM, Zanardo A, Morales N, Gomi C, Moraes R (1988) Zonação metamórfica inversa do Grupo Araxá/Canastra na região de São Sebastião do Paraíso—Alpinópolis. In: 35° Congresso Brasileiro de Geologia. SBG, Belém, pp 1203–1216Google Scholar
  42. Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Miner Petrol 101:149–164. doi: 10.1007/BF00375302 CrossRefGoogle Scholar
  43. Spear FS, Kohn MJ, Cheney JT (1999) PT paths from anatectic pelites. Contrib Miner Petrol 134:17–32CrossRefGoogle Scholar
  44. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25:703–713. doi: 10.1111/j.1525-1314.2007.00724.x CrossRefGoogle Scholar
  45. Trouw RAJ, Ribeiro A, Paciullo FVP (1983) Geologia estrutural dos Grupos São João del Rei, Carrancas e Andrelândia, Sul de Minas Gerais. An Acad Bras Cienc 55:71–85Google Scholar
  46. Trouw RAJ, Heilbron M, Ribeiro A, Valeriano CM, Almeida JCH, Tupinambá M, Andreis RR (2000a) The central segment of the Ribeira Belt. In: Cordani UG, Milani E, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Rio de Janeiro, pp 287–310Google Scholar
  47. Trouw RAJ, Ribeiro A, Paciullo FVP, Heilbron M (2000b) Interference between the Neoproterozoic Brasilia and Ribeira Belts, with special emphasis on high-pressure granulites. In: International geological congress. Rio de Janeiro, p 45pGoogle Scholar
  48. Trouw RAJ, Trouw CC, Peternel R, Tohver E (2008) Novas idades SHRIMP de zircões da zona de interferência entre as Faixas Brasília e Ribeira. In: 44° Congresso Brasileiro de Geologia. SBG, Curitiba, p 29Google Scholar
  49. Vannay JC, Grasemann B (2001) Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol Mag 138:253–276CrossRefGoogle Scholar
  50. Vannay JC, Hodges KV (1996) Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. J Metamorph Geol 14:635–656CrossRefGoogle Scholar
  51. Vernon RONH (1999) Quartz and feldspar microsructures in metamorphic rocks. Can Miner 37:513–524Google Scholar
  52. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Miner Petrol 98:257–276CrossRefGoogle Scholar
  53. Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Miner Petrol 117:375–393. doi: 10.1007/BF00307272 CrossRefGoogle Scholar
  54. Vlach SRF (2010) Th–U–PbT dating by electron microanalysis, Part I. Monazite: analytical procedures and data treatment. Geol USP Sér Cie 10:61–85CrossRefGoogle Scholar
  55. Vlach SRF, Gualda GAR (2000) Microprobe monazite dating and the ages of some granitic and metamorphic rocks from southeastern Brazil. Rev Bras Geociê 30:214–218Google Scholar
  56. Warren CJ, Beaumont C, Jamieson RA (2008) Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics 27:1–28. doi: 10.1029/2008TC002292 CrossRefGoogle Scholar
  57. Waters DJ (2001) The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. Lithos 56:97–110. doi: 10.1016/S0024-4937(00)00061-X CrossRefGoogle Scholar
  58. Westin A (2008) Influência da pilha de nappes na trajetória metamórfica da nappe Andrelândia, borda sul do cráton São Francisco. Monograph, Universidade de São PauloGoogle Scholar
  59. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall, New JerseyGoogle Scholar
  60. Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib Miner Petrol 148:471–488. doi: 10.1007/s00410-004-0617-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations