International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2343–2357 | Cite as

Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K–40Ar mica and U–Pb zircon evidence

  • Carmen I. Martínez Dopico
  • Eric Tohver
  • Mónica G. López de Luchi
  • Klaus Wemmer
  • Augusto E. Rapalini
  • Peter A. Cawood
Original Paper


U–Pb SHRIMP zircon crystallization ages and Ar–Ar and K–Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U–Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar–Ar muscovite age of 182 ± 3 Ma and a K–Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U–Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K–Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K–Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K–Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian–Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198–182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern Patagonia during the Early Jurassic (Sinemurian–Pliensbachian) was responsible for the partial (re)exhumation of the mid-crustal Paleozoic basement along reactivated discrete NE–SW to ENE–WSW lineaments and the resetting of isotopic systems. These new thermochronological data indicate that Early Permian magmatic rocks of the Nahuel Niyeu block were below 300 °C for ca. 20 Ma prior to the onset of the main magmatic episode of the Late Permian to Triassic igneous and metaigneous rocks of the Yaminué block.


Patagonia Magmatism Paleozoic basement Reset crystallization ages Cooling ages 



We thank two anonymous reviewers for their detailed comments and W.C. Dullo for editorial handling. C.M.D. would like to thank F. Jourdan, T. Luppo and F. Narduzzi for discussions on a draft of the paper. University of Buenos Aires (PICTUBACYT X183), CONICET and ANPCYT (PICT20131162) financial support is acknowledged.


  1. Aragón E, Dalla Salda L, Varela R, Benialgo A (1999) Jurassic resetted ages of Gonzalito SEDEX deposit, northeastern Patagonia. II South American Symposium on Isotope Geology I, pp 7–10Google Scholar
  2. Basei MAS, Varela R, Sato AM, Siga Jr O, Llambías EJ (2002) Geocronología sobre rocas del Complejo Yaminué, Macizo Norpatagónico, Río Negro, Argentina. 15th Congreso Geológico Argentino, vol 3, pp 117–122Google Scholar
  3. Busteros A, Giacosa R, Lema H, Zubia M (1998) Descripción geólogica de la Hoja Sierra Grande (4166-IV), escala 1:250000, provincia de Río Negro. Instituto de Geología y Recursos Minerales, SEGEMAR, Boletín 241, Buenos Aires, p 75Google Scholar
  4. Büttner SH, Glodny J, Lucassen F, Wemmer K, Erdmann S, Handler R, Franz G (2005) Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83:143–181CrossRefGoogle Scholar
  5. Cagnoni M, Linares E, Ostera H, Parica C, Remesal M (1993) Caracterización geoquímica de los metasedimentos de la Formación Nahuel Niyeu: implicancias sobre su proveniencia y marco tectónico. 13th Congreso Geológico Argentino and 2nd Congreso de Exploración de Hidrocarburos, vol 1. Buenos Aires, pp 281–286Google Scholar
  6. Caminos R (1983) Descripción Geológica de las Hojas 39 g, Cerro Tapiluke y 39 h, Chipauquil, provincia de Río Negro. Servicio Geológico Nacional, (unpublished). Buenos Aires, p 41Google Scholar
  7. Caminos R (2001) Hoja Geológica N 4166-I Valcheta, provincia de Río Negro, Boletín 310, Servicio Geológico Minero Argentino, Buenos Aires, p 78Google Scholar
  8. Caminos R, Chernicoff C, Varela R (1994) Evolución tectónico-metamórfica y edad del Complejo Yaminué, Basamento pre-andino norpatagónico, República Argentina. 7th Congreso Geológico Chileno, Actas II. Concepción, pp 1301–1305Google Scholar
  9. Chernicoff CJ, Caminos R (1996) Estructura y metamorfismo del Complejo Yaminué, Macizo Norpatagónico oriental, provincia de Rio Negro. Revista de la Asociación Geológica Argentina 51:107–118Google Scholar
  10. Chernicoff CJ, Zappettini EO, Santos JOS, McNaughton NJ, Belousova E (2013) Combined U-Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Río Negro province, Argentina: implications for the origin and evolution of the Patagonia composite terrane. Geosci Front 4:37–56. doi: 10.1016/j.gsf.2012.06.003 CrossRefGoogle Scholar
  11. Croce F, Lince Klinger F, Giménez ME, Martínez MP, Ruiz F (2009) Estimación de profundidades del Complejo Plutónico Navarrete mediante procesamiento gravimétrico. Geoacta 34:25–38Google Scholar
  12. Dahl PS (1996) The crystal-chemical basis for differential argon retention in coexisting muscovite and biotite: Inferences from interlayer partitioning data and implications for geochronology. Contrib Min Petrol 123:22–39CrossRefGoogle Scholar
  13. Féraud G, Alric V, Fornari M, Bertrand H, Haller M (1999) The Mesozoic silicic volcanic Province of Patagonia synchronous with the Gondwana Break-up and subduction: spacetime evolution evidenced by 40Ar/39Ar data. Earth Planet Sci Lett 172:83–96CrossRefGoogle Scholar
  14. Franzese JR, Spalletti LA (2001) Late Triassic-early Jurassic continental extension in southwest Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270CrossRefGoogle Scholar
  15. Giacosa RE (1997) Geología y petrología de las rocas pre-cretácicas de la región de sierra de Pailemán, provincia de Río Negro. Revista de la Asociación Geológica Argentina 52:71–91Google Scholar
  16. Giacosa RE (2001) Zonas de cizalla frágil-dúctil neopaleozoicas en el nordeste de la Patagonia. Revista de la Asociación Geológica Argentina 56:131–140Google Scholar
  17. González SN, Greco GA, González PD, Sato AM, Llambías EJ, Varela R, Basei MAS (2014) Geología, petrografía y edad U–Pb de un enjambre longitudinal NO-SE de diques del Macizo Norpatagónico Oriental, Río Negro. Revista de la Asociación Geológica Argentina 71:174–183Google Scholar
  18. Gozálvez M (2009a) Petrografía y edad 40Ar-39Ar de leucogranitos peraluminosos al oeste de Valcheta. Macizo Nordpatagónico (Río Negro). Revista de la Asociación Geológica Argentina 64:275–284Google Scholar
  19. Gozálvez M (2009b) Caracterización del plutón San Martín y las mineralizaciones de wolframio asociadas, departamento Valcheta, provincia de Río Negro. Revista de la Asociación Geológica Argentina 64:409–425Google Scholar
  20. Grecco L, Gregori D (2011) Geoquímica y geocronología del Complejo Plutónico Pailemán, Comarca Nordpatagónica, Provincia de Río Negro. XVIII Congreso Geológico Argentino, p 2Google Scholar
  21. Greco GA, González PD, González SN, Sato AM, Basei MAS, Tassinari CCG, Sato K, Varela R, Llambías EJ (2015) Geology, structure and age of the Nahuel Niyeu Formation in the aguada Cecilio area, North Patagonian Massif., Argentina. J S Am Earth Sci 62:12–32CrossRefGoogle Scholar
  22. Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res 14:429–450CrossRefGoogle Scholar
  23. Gregori DA, Kostadinoff J, Álvarez G, Raniolo A, Strazzere L, Martínez JC, Barros M (2013) Preandean geological configuration of the eastern North Patagonian Massif, Argentina. Geosci Front 4:693–708CrossRefGoogle Scholar
  24. Hansma J, Tohver E, Schrank C, Jourdan F, Adams D (2015) The timing of the Cape Orogeny: new 40Ar/39Ar age constraints on deformation and cooling of the Cape Fold Belt, South Africa. Gondwana Res. doi: 10.1016/ Google Scholar
  25. Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in Biotite: temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468CrossRefGoogle Scholar
  26. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler M (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051CrossRefGoogle Scholar
  27. Jourdan F, Féraud G, Bertrand H, Kampunzu AB, Tshoso G, Watkeys MK, Le Gal B (2005) Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33:745–748. doi: 10.1130/G21632.1 CrossRefGoogle Scholar
  28. Kirschner DL, Cosca MA, Masson H (2003) Timing of deformation in the Helvetic Alps: evidence from 40Ar/39Ar and Rb/Sr geochronology of white micas. Contrib Min Petrol. doi: 10.1007/s00410-003-0461-2 Google Scholar
  29. Lince Klinger F, Martínez P, Rapalini AE, Giménez ME, López de Luchi MG, Croce FA, Ruiz F (2010) Modelo gravimétrico en el borde noreste del Macizo Norpatagónico. Revista Brasileira de Geofísica 28:463–472CrossRefGoogle Scholar
  30. Lince Klinger F, León M, Martínez P, Weidmann C, Anci S, Álvarez O (2014) Modelo geofísico con datos gravimétricos y aeromagnéticos en el borde noreste del Macizo Norpatagónico, Río Negro, Argentina. Geoacta 39:51–61Google Scholar
  31. López de Luchi MG, Rapalini AE, Tomezzoli RN (2010) Magnetic fabric and microstructures of Late Paleozoic granitoids from the North Patagonian Massif: evidence of a collision between Patagonia and Gondwana? Tectonophysics 494:118–137CrossRefGoogle Scholar
  32. López de Luchi MG, Martínez Dopico C, Rapalini AE (2013) The Musters Stock: a hybrid quartz monzogabbro to granodiorite, west of Valcheta, Río Negro. 2° Simposio sobre Petrología Ígnea y Metalogénesis Asociada. Resúmenes. San Luis, pp 49–50Google Scholar
  33. López de Luchi M, Martínez Dopico C, Rapalini A (2015) Geochemical and isotopic constraints on the sources of the Permian-Early Triassic granitoids of the northeastern sector of the North Patagonian Massif. 3° Simposio sobre Petrología Ígnea y Metalogénesis Asociada. Resúmenes. General Roca, pp 49–50Google Scholar
  34. Ludwig K (2009) Squid 2; A User’s Manual. Berkeley Geochronology Center, 100pGoogle Scholar
  35. Ludwig K (2012) User´s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 5, 75pGoogle Scholar
  36. Márquez MJ, Massaferro GI, Fernández MI (2010) El volcanismo del Complejo Marifil en Arroyo Verde, vertiente suroriental del Macizo de Somún Cura, Chubut. Revista de la Asociación Geológica Argentina 66:314–324Google Scholar
  37. Martínez Dopico CI, López de Luchi MG, Rapalini AE (2010a) Sources for the Ordovician granites in the NE North Patagonian Massif. EOS Trans. AGU, 91(26), Meet. Am. Suppl., Abstract, V11A-07. Foz de IguazúGoogle Scholar
  38. Martínez Dopico CI, López de Luchi MG, Wemmer K, Rapalini AE, Linares E (2010b) Further evidences for the widespread Ordovician Magmatism in the Northeastern North Patagonian Massif: testimony for the continuity of the Famatinian orogen. Bollettino di Geofisica Teorica ed Applicata 51:34–37Google Scholar
  39. Martínez Dopico CI, López de Luchi M, Rapalini AE (2014) Petrography and mineral chemistry of the Eraly Paleozoic metamorphic basement north of Valcheta town, Río Negro. XIX Congreso Geológico Argentino. Online files, 1pGoogle Scholar
  40. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/40Ar method, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  41. Naipauer M, García Morabito E, Marques J, Tunik M, Rojas Vera EA, Vujovich GI, Pimentel MP, Ramos VA (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface and U–Pb detrital zircon ages. Tectonophysics 524–525:59–75CrossRefGoogle Scholar
  42. Navarrete C, Gianni G, Echaurren A, Lince Klinger F, Folguera A (2016) Episodic Jurassic to Lower Cretaceous intraplate compression in Central Patagonia during Gondwana breakup. J Geodyn. doi: 10.1016/j.jog.2016.10.001 Google Scholar
  43. Pankhurst RJ, Rapela CW (1995) Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia. Earth Planet Sci Lett 134:23–36CrossRefGoogle Scholar
  44. Pankhurst RJ, Rapela CW, Caminos R (1993) Problemas geocronológicos de los granitoides gondwánicos de Nahuel Niyeu, Macizo Norpatagónico 12th Congreso Geológico Argentino and 2nd Congreso de Exploración de Hidrocarburos, vol 4, pp 99–104Google Scholar
  45. Pankhurst R, Riley T, Fanning C, Kelley S (2000) Episodic silicic volcanism in Patagonia and the Antartic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J Petrol 41:605–625CrossRefGoogle Scholar
  46. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257CrossRefGoogle Scholar
  47. Pankhurst RJ, Rapela CW, López de Luchi MG, Rapalini AE, Fanning CM, Galindo C (2014) The Gondwana connections of northern Patagonia. J Geol Soc 171:313–328. doi: 10.1144/jgs2013-081 CrossRefGoogle Scholar
  48. Purdy JW, Jäger E (1976) K–Ar ages on rock forming minerals from the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell’ Universita di Padova 30:1–31Google Scholar
  49. Ramos VA (1984) Patagonia: ¿Un continente paleozoico a la deriva? 9th Congreso Geológico Argentino. San Carlos de Bariloche 2:311–325Google Scholar
  50. Rapalini AE, López de Luchi M, Martínez Dopico C, Lince Klinger F, Giménez M, Martínez P (2010) Did Patagonia collide against Gondwana in the Late Paleozoic? Insights from a multidisciplinary study of magmatic units of the North Patagonian Massif. Geol Acta 8:349–371. doi: 10.1344/105.000001577 Google Scholar
  51. Rapalini AE, López de Luchi M, Tohver E, Cawood PA (2013) The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin? Terra Nova 25:337–342. doi: 10.1111/ter.12043 CrossRefGoogle Scholar
  52. Sato AM, Basei MAS, Tickyj H, Llambías EJ, Varela R (2004) Granodiorita El Sótano: plutón jurásico deformado aflorante en el basamento de Las Grutas, Macizo Norpatagónico Atlántico. Revista de la Asociación Geológica Argentina 59:591–600Google Scholar
  53. Steenken A, Wemmer K, López de Luchi MG, Siegesmund S, Pawlig S (2004) Crustal Provenance and Cooling of the Basement Complexes of the Sierra de San Luis: an insight into the tectonic history of the Proto-Andean Margin of Gondwana. Gondwana Res 7:1171–1195CrossRefGoogle Scholar
  54. Stern RA (2001) A new isotopic and trace-element standard for the ion microprobe: preliminary thermal ionization mass spectrometry (TIMS) U–Pb and electron-microprobe data. Radiogenic Age and Isotopic Studies: Report 14, Geological Survey of Canada, Current Research 2001-F1, 11pGoogle Scholar
  55. Tohver E, Cawood PA, Rossello E, López de Luchi MG, Rapalini A, Jourdan F (2008) New SHRIMP U–Pb and 40Ar/39Ar constraints on the crustal stabilization of southern South America, from the margin of the Rio de Plata (Sierra de Ventana) craton to northern Patagonia. EOS Abstracts, American Geophysical Union, Fall Meeting, T23C-2052Google Scholar
  56. Tohver E, Cawood PA, Rosello EA, Jourdan F (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Río de la Plata craton, Argentina. Gondwana Res 21:394–405. doi: 10.1016/ CrossRefGoogle Scholar
  57. Tommezzoli RN, Rapalini AE, López de Luchi MG, Martínez Dopico CI (2013) Permian remagnetization of Ordovician granitoids in northeastern North Patagonian Massif, Argentina. Gondwana Res 24:192–202CrossRefGoogle Scholar
  58. Uriz NJ, Cingolani CA, Chemale F Jr, Macambira MB, Armstrong R (2011) Isotopic studies on detrital zircons of Silurian- Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance. Int J Earth Sci 100:571–589CrossRefGoogle Scholar
  59. Varela R, Sato K, González PD, Sato AM, Basei MAS (2009) Geología y geocronología Rb–Sr de granitoides de Sierra Grande, Provincia de Río Negro. Revista de la Asociación Geológica Argentina 64:275–284Google Scholar
  60. von Gosen W (2003) Thrust tectonics in the North Patagonian Massif (Argentina): implications for a Patagonian plate. Tectonics 22(1):1005. doi: 10.1029/2001TC901039 Google Scholar
  61. Wemmer K (1991) K/Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich-Beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N-Italien). Göttinger Arbeiten zur Geologie und Paläontologie 51:1–61Google Scholar
  62. Zanettini JCM (1980) Sedimentitas Triásicas al sur de Sierra Grande (Provincias de Río Negro y Chubut). Revista de la Asociación Geológica Argentina 35:301–307Google Scholar
  63. Zanettini JCM (1981) La Formación Sierra Grande (provincia de Río Negro). Revista de la Asociación Geológica Argentina 36:160–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carmen I. Martínez Dopico
    • 1
    • 2
  • Eric Tohver
    • 3
  • Mónica G. López de Luchi
    • 1
    • 2
  • Klaus Wemmer
    • 4
  • Augusto E. Rapalini
    • 2
    • 5
  • Peter A. Cawood
    • 6
    • 7
  1. 1.Instituto de Geocronología y Geología Isotópica (INGEIS)Buenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.School of Earth and Geographical SciencesUniversity of Western AustraliaPerthAustralia
  4. 4.Geoscience Centre of the University of Göttingen (GZG)GöttingenGermany
  5. 5.Instituto de Geociencias BásicasAplicadas y Ambientales de Buenos Aires (IGEBA)Buenos AiresArgentina
  6. 6.Department of Earth SciencesUniversity of St. AndrewsSt AndrewsUK
  7. 7.School of Earth, Atmosphere and EnvironmentMonash UniversityMelbourneAustralia

Personalised recommendations