International Journal of Earth Sciences

, Volume 106, Issue 7, pp 2297–2318 | Cite as

The role of precursory structures on Tertiary deformation in the Black Forest—Hegau region

  • Daniel Egli
  • Jon Mosar
  • Tobias Ibele
  • Herfried Madritsch
Original Paper


Structural inheritance of preexisting crustal discontinuities is widely accepted to have played a crucial role during the Cenozoic tectonic evolution of the northern Alpine foreland. It is recognised as a process that can strongly influence local fault kinematics and strain patterns. The case study presented herein is dedicated to the tectonic analysis of the Freiburg–Bonndorf–Bodensee Fault Zone (FBBFZ) located at the external margin of the northern Alpine Molasse Basin and extending into the crystalline Black Forest Massif. The structure and kinematics of this crustal-scale fault zone are investigated by means of a regional analysis of locally mapped faults, kinematic analysis of outcrop-scale fractures and slip vector modelling. The exceptional possibility of analysing the fault zone exposed from basement to cover allowed for an evaluation of interaction between precursory structures and subsequent deformation features. The results of this study show that the crystalline basement structures exposed along the FBBFZ had a strong imprint on the map-scale fault pattern observable in the Mesozoic and Tertiary sequences. Kinematic analysis of outcrop-scale fracture systems in the latter units yields evidence for local multi-directional extension and strike-slip faulting during Miocene to recent times. While these observations may evoke the interpretation of a multistage palaeostress history along the FBBFZ, slip vector modelling of a very well exposed FBBFZ segment suggests that the various strain records can alternatively be explained by one single regional stress tensor and be related to superordinate deep-seated strike-slip deformation.


Fault reactivation Fault-slip analysis Northern Switzerland Southern Germany Alpine foreland Geodynamics 



This study was funded by the Swiss National Science Foundation (SNF Projects 200021_144145 and 200020_156252) with kind support of the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA). NAGRA’s permission to publish parts of the 2D reflection seismic profile 91-NO-79 is particularly acknowledged. We thank K. Reicherter and H. Ortner for critical, yet constructive reviews and W.-Chr. Dullo (Chief Editor, IJES) for the support and manuscript handling.


  1. Angelier J (1994) Fault slip analysis and palaeostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon Press, Oxford, pp 53–100Google Scholar
  2. Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des constraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bulletin de la Société Géologique de France XIX(7):1309–1318CrossRefGoogle Scholar
  3. Bangert V (1991) Blatt 8115 Lenzkirch. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen: p 132Google Scholar
  4. Bartlett WL, Friedman M, Logan JM (1981) Experimental folding and faulting of rocks under confining pressure Part IX. Wrench faults in limestone layers. Tectonophysics 79(3):255–277CrossRefGoogle Scholar
  5. Birkhäuser P, Roth P, Naef H et al (2001) 3D-Seismik: Räumliche Erkundung der mesozoischen Sedimentschichten im Zürcher Weinland. Nagra Technical Report, NTB 00–03, Wettingen, p 158Google Scholar
  6. Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96(02):109–117CrossRefGoogle Scholar
  7. Bourgeois O, Ford M, Diraison M et al (2007) Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci 96(6):1003–1031CrossRefGoogle Scholar
  8. Carlé W (1955) Bau und Entwicklung der südwestdeutschen Grossscholle. Geologisches Jahrbuch, Beihefte 16:272Google Scholar
  9. Cloetingh S, Cornu T, Ziegler PA et al (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth Sci Rev 74:127–196CrossRefGoogle Scholar
  10. Deichmann N, Ballarin Dolfin D, Kastrup U (2000) Seismizitat der Nord- und Zentralschweiz. NAGRA NTB00–05, p 93Google Scholar
  11. Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black Forest (western Germany). Geol Rundsch 87(1):43–52CrossRefGoogle Scholar
  12. Diebold P, Noack T (1997) Late Palaeozoic troughs and Tertiary structures in the eastern folded Jura. In: Pfiffner OA, Lehner P, Heitzmann P et al (eds) Deep Structure of the Swiss Alps: results of NRP 20. Birkhäuser, Basel, Switzerland, pp 59–63Google Scholar
  13. Freudenberg H (1940) Eine Kartierung der Bewegungsspuren im obersten Höllental (Schwarzwald). Geol Rundsch 31(3–4):285–293CrossRefGoogle Scholar
  14. Frieg B, Grob H, Hertrich M et al (2015) Novel approach for the exploration of the Muschelkalk Aquifer in Switzerland for the CO2-free production of vegetables. In: Conference Abstract: Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015Google Scholar
  15. Geyer M, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. Schweizerbartsche Vlgsb, p 627Google Scholar
  16. Güldenpfennig M, Loeschke J (1991) Petrographie und Geochemie unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler-Lenzkirch und der Umgebung von Präg. Jahreshefte des Geologischen Landesamts Baden-Württemberg 33:5–32Google Scholar
  17. Hancock PL, Barka AA (1987) Kinematic indicators on active normal faults in Western Turkey. J Struct Geol 9(5):573–584CrossRefGoogle Scholar
  18. Heidbach O, Reinecker J (2013) Analyse des rezenten Spannungsfelds der Nordschweiz. NAGRA NAB12-05, p 146Google Scholar
  19. Heidbach O, Tingay M, Barth A et al (2008) The World Stress Map database release 2008. doi: 10.1594/GFZ.WSM.Rel2008
  20. Heuberger S, Roth P, Zingg O, Naef H, Meier B (2016) The St. Gallen Fault Zone: a long lived, multiphase structure in the North Alpine Foreland Basin revealed by 3D seismic data. Swiss J Geosci 109:83–102CrossRefGoogle Scholar
  21. Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation. The Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci 96:979–1002CrossRefGoogle Scholar
  22. Hofmann F, Schlatter R, Weh M (2000) Blatt 1011 Beggingen (Südhälfte) mit SW-Anteil von Blatt 1012 Singen. Swisstopo, Wabern, p 113Google Scholar
  23. Homberg C, Hu J-C, Angelier J, Bergerat F, Lacombe O (1997) Characterization of stress perturbations near major fault zones: insights from field studies (Jura Mountains) and numerical modelling. J Struct Geol 19(5):703–718CrossRefGoogle Scholar
  24. Ibele T (2015) Tectonics of the Hegau and Lake Constance region: a synthesis based on existing literature. Nagra working report, NAB 12–23, Wettingen, p 70Google Scholar
  25. Illies H (1972) The Rhine Graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60CrossRefGoogle Scholar
  26. Interreg_IIIA (2007) Alpenrhein Bodensee Hochrhein, Projekt “Grenzüberschreitende Bewirtschaftung des Grundwassers im Raum Hegau—Schaffhausen”Google Scholar
  27. Lacombe O, Angelier J, Byrne D et al (1993) Eocene-Oligocene tectonics and kinematics of the Rhine-Saone continental transform zone (eastern France). Tectonics 12:874–888CrossRefGoogle Scholar
  28. Laubscher HP (1970) Grundsätzliches zur Tektonik des Rheingrabens. In: Illies H, Mueller S (eds) Graben Problems. Proceedings of an International Rift Symposium held in Karlsruhe 1968, International Upper Mantle Project. Schweitzerbart’sche, Stuttgart,p 79–86Google Scholar
  29. Link K (2010) Die thermo-tektonische Entwicklung des Oberrheingraben-Gebietes seit der Kreide, p 373Google Scholar
  30. Lippolt HJ, Gentner W, Wimmenauer W (1963) Altersbestimmungen nach der Kalium-Argon-Methode an tertiären Eruptivgesteinen Südwestdeutschlands. Jahreshefte des Geologischen Landesamts Baden-Württemberg 6:507–538Google Scholar
  31. Lopes Cardozo GGO, Behrmann JH (2006) Kinematic analysis of the Upper Rhine Graben boundary fault system. J Struct Geol 28(6):1028–1039CrossRefGoogle Scholar
  32. Madritsch H (2015) Outcrop-scale fracture systems in the Alpine foreland of central northern Switzerland: kinematics and tectonic context. Swiss J Geosci 108(2):155–181CrossRefGoogle Scholar
  33. Madritsch H, Kounov A, Schmid SM et al (2009) Multiple fault reactivations within the intra-continental Rhine-Bresse transfer zone (La Serre Horst, eastern France). Tectonophysics 471(3–4):297–318CrossRefGoogle Scholar
  34. Malz A, Madritsch H, Meier B et al (2016) An unusual triangle zone in the external northern Alpine foreland (Switzerland): structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt. Tectonophysics 670:127–143CrossRefGoogle Scholar
  35. Marchant R, Ringgenberg Y, Stampfli G et al (2005) Palaeotectonic evolution of the Zürcher Weinland (northern Switzerland) based on 2D and 3D seismic data. Eclogae Geol Helv 98(3):345–362CrossRefGoogle Scholar
  36. Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12(8):973–986CrossRefGoogle Scholar
  37. Mazurek M, Hurford AJ, Leu W (2006) Unravelling the multi-stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Res 18:27–50CrossRefGoogle Scholar
  38. Meier B, Kuhn P, Roth P et al (2014) Tiefenkonvertierung der regionalen Strukturinterpretation der Nagra 2D-Seismik 2011/12. Nagra Working Report, NAB 14-34, Wettingen, p 45Google Scholar
  39. Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275–278CrossRefGoogle Scholar
  40. Müller WH, Naef H, Graf HR (2002) Geologische Entwicklung der Nordschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland. Nagra Technical Report, NTB 99-08, Wettingen, p 237Google Scholar
  41. Naef H, Birkhäuser P, Roth P (1995) Interpretation der Reflexionsseismik im Gebiet nördlich Lägeren—Zürcher Weinland. NAGRA Technical Report, NTB94-14, Wettingen, p 120Google Scholar
  42. Nagra (2008) Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager Geologische Grundlagen, Textband. Nagra Technical Report, NTB08-04, Wettingen, p 439Google Scholar
  43. Ortner H, Reiter F, Acs P (2002) Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows(TM). Comput Geosci 28(10):1193–1200CrossRefGoogle Scholar
  44. Paul W (1948) Beiträge zur Tektonik und Morphologie des mittleren Schwarzwaldes und seiner Ostabdachung. Mitteilungen der Badischen Geologischen Landesanstalt, pp 45–49Google Scholar
  45. Pavoni N (1977) Erdbeben im Gebiet der Schweiz. Eclogae Geol Helv 70:351–370Google Scholar
  46. Pfiffner OA, Erard P, Stäuble M (1997) Two cross sections through the Swiss Molasse Basin (lines E4–E6, W1, W7–W10). In: Pfiffner OA, Lehner P, Heitzmann P et al (eds) Deep Structure of the Swiss Alps: Results of NRP 20. Birkhäuser, Basel, Switzerland, pp 64–72Google Scholar
  47. Rahn MK, Selbekk R (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J Geosci 100(3):371–381CrossRefGoogle Scholar
  48. Regelmann C, Regelmann K (1921) Erläuterungen zur elften Auflage der Geologischen Uebersichtskarte von Württemberg und Badem, dem Elsass. der Pfalz und den weiterhin angrenzenden Gebieten. Württ, Statistisches LandesamtGoogle Scholar
  49. Reicherter K, Froitzheim N, Jarosinski M et al (2008) Alpine tectonics north of the Alps. In: McCann T (ed) The geology of Central Europe, pp 1233–1285Google Scholar
  50. Reinecker J, Schneider G (2002) Zur Neotektonik der Zollernalb: der Hohenzollerngraben und die Albstadt-Erdbeben. Jahresberichte und Mitteilungen oberrheinischer geologischer Verein 84:391–417CrossRefGoogle Scholar
  51. Reiter F, Acs P (1996–2011) Tectonics FP 1.75 Computer Software for Structural Geology. Operating ManualGoogle Scholar
  52. Rupf I, Nitsch E (2008) Das Geologische Landesmodell von Baden-Würtemberg: Datengrundlage, technische Umsetzung und erste geologische Ergebnisse. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Würtemberg—Informationen 21: p 82Google Scholar
  53. Sawatzki G (2005) Blatt 8215 Ühlingen-Birkendorf. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 106Google Scholar
  54. Sawatzki G, Hann HP (2003) Badenweiler-Lenzkirch-Zone (Südschwarzwald). Geologische Karte von Baden-Württemberg 1:50 000, Erläuterungen: p 182Google Scholar
  55. Schaltegger U (2000) U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828CrossRefGoogle Scholar
  56. Schmidle W (1911) Zur Kenntnis der Molasse und der Tektonik am nordwestlichen Bodensee. Zeitschrift der deutschen geologischen Gesellschaft 63(1):522–551Google Scholar
  57. Schmidle W (1918) Die Stratigraphie der Molasse und der Bau des Ueberlinger- und Unterseebeckens. Schriften des Vereins für Gesichte des Bodensees und seiner Umgebung 47:63–83Google Scholar
  58. Schneider G (1979) The Earthquake in the Swabian Jura of 16 November 1911 and present concepts of seismotectonics. Tectonophysics 53:279–288CrossRefGoogle Scholar
  59. Schneider G (1993) Beziehungen zwischen Erdbeben und Strukturen der Süddeutschen Grossscholle. Neues Jahrbuch der Geologie und Paleontologie Abhandlungen 189(1–3):275–288Google Scholar
  60. Schreiner A (1989) Blatt 8219 Singen. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 139Google Scholar
  61. Schreiner A (1992) Hegau und westlicher Bodensee. Geologische Karte von Baden-Württemberg 1:50 000, Erläuterungen, p 290Google Scholar
  62. Schreiner A (1995) Blatt 8218 Gottmadingen. Geologische Karte von Baden-Württemberg 1:25 000, Erläuterungen, p 142Google Scholar
  63. Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21(1):6-1–6-17CrossRefGoogle Scholar
  64. Schwarz HU (2012) Das Schwäbisch-Fränkische Bruchmuster. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 163(4):411–446CrossRefGoogle Scholar
  65. Sommaruga A, Eichenberger U, Marillier F (2012) Seismic Atlas of the Swiss Molasse Basin. SwisstopoGoogle Scholar
  66. Stange S, Brüstle W (2005) The Albstadt/Swabian Jura seismic source zone reviewed through the study of the earthquake of March 22, 2003. Jahresberichte und Mitteilungen oberrheinischer geologischer Verein N.F. 87:391–414CrossRefGoogle Scholar
  67. Stange S, Strehlau J (2002) Fault plane solutions of upper and lower crustal earthquakes under the central Molasse basin: evidence of a composite stress field? Conference abstract, 62. Annual Meeting of DGG, March 2002, HannoverGoogle Scholar
  68. Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59(2):118–130CrossRefGoogle Scholar
  69. Weiskirchner W (1972) Einführung zur Exkursion Hegau. Fortschritte in der Mineralogie, 50, Beiheft 2:70–84Google Scholar
  70. Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Zeitschrift der deutschen geologischen Gesellschaft 152(2–4):405–437Google Scholar
  71. Willett SD, Schlunegger F (2010) The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Res 22:623–639CrossRefGoogle Scholar
  72. Wimmenauer W (1974) The alkaline province of central Europe and France. In: Sorensen H (ed) The Alkaline Rocks. Wiley, London, pp 238–271Google Scholar
  73. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar
  74. Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Chang 58(1–4):237–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Earth Sciences DepartmentFribourg UniversityFribourgSwitzerland
  2. 2.Institute of Geological SciencesUniversity of BernBernSwitzerland
  3. 3.BerschisSwitzerland
  4. 4.WettingenSwitzerland

Personalised recommendations