Skip to main content
Log in

Gas accumulations in Oligocene–Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene–Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene–Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander R, Kagi RI, Woodhouse GW (1981) Variation in the ratio of isomeric butanes with sediment temperature in the carnarvon basin of Western Australia. In: Bjoroey M, Albrecht C, Cornford C, de Groot K, Eglinton G, Galimov E, Leythaeuser D, Pelet R, Rullkoetter J, Speers G (eds) Advances in organic geochemistry, 1981: proceedings of the international meeting on organic geochemistry, vol 10, pp 76–79

  • Belaed S (2007) Charakterisierung potenzieller Muttergesteine für biogenes Erdgas in der österreichischen Molassezone. Diploma thesis. Technical University of Clausthal, Germany

  • Bernard BB, Brooks JM, Sackett WM (1978) Light hydrocarbons in recent Texas continental shelf and slope sediments. J Geophys Res 83:4053–4061

    Article  Google Scholar 

  • Berner U, Faber E (1987) Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Org Geochem 13:67–72

    Article  Google Scholar 

  • Berner U, Faber E (1996) Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Org Geochem 24:947–955

    Article  Google Scholar 

  • Brix F, Schultz O (1993) Erdöl und Erdgas in Österreich, 2nd edn. Veröffentlichungen aus dem Naturhistorischen, Wien

    Google Scholar 

  • Brown A (2011) Identification of source carbon for microbial methane in unconventional gas reservoirs. AAPG Bull 95:1321–1338

    Article  Google Scholar 

  • Chung HM, Gormly JR, Squires RM (1988) Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem Geol 71:97–104

    Article  Google Scholar 

  • Clayton C (1991) Carbon isotope fractionation during natural gas generation from kerogen. Mar Pet Geol 8:232–240

    Article  Google Scholar 

  • Covault JA, Hubbard SM, Graham SA, Hinsch R, Linzer H (2009) Turbidite-reservoir architecture in complex foredeep-margin and wedge-top depocenters, Tertiary Molasse foreland basin system, Austria. Mar Pet Geol 26:379–396

    Article  Google Scholar 

  • Dai J (1990) Characteristics of hydrogen isotopes of paraffinic gas in China. Pet Explor Dev 17:27–32

    Google Scholar 

  • Dimitrakopoulos R, Muehlenbachs K (1987) Biodegradation of petroleum as a source of 13C-enriched carbon dioxide in the formation of carbonate cement. Chem Geol 65:283–291

    Google Scholar 

  • Fuex AN (1977) The use of stable carbon isotopes in hydrocarbon exploration. J Geochem Explor 7:155–188

    Article  Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Article  Google Scholar 

  • Grundtner M-L, Pytlak L, Gross D, Linzer H.-G, Sachsenhofer RF (2014) Rock-fluid interactions in reservoir rocks of the Molasse Basin. In: EMAS 2014—11th regional workshop on electron probe microanalysis today—practical aspects, Leoben

  • Grunert P, Hinsch R, Sachsenhofer RF, Bechtel A, Ćorić S, Harzhauser M, Piller W, Sperl H (2013) Early Burdigalian infill of the Puchkirchen Trough (North Alpine Foreland Basin, Central Paratethys): facies development and sequence stratigraphy. Mar Pet Geol 39:164–186

    Article  Google Scholar 

  • Grunert P, Auer G, Harzhauser M, Piller WE (2015) Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsl Stratigr 48:111–133

    Article  Google Scholar 

  • Gusterhuber J, Dunkl I, Hinsch R, Linzer H-G, Sachsenhofer RF (2012) Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria and Salzburg). Geol Carpath 63:295–305

    Article  Google Scholar 

  • Gusterhuber J, Hinsch R, Linzer H-G, Sachsenhofer R (2013) Hydrocarbon generation and migration from sub-thrust source rocks to foreland reservoirs: the Austrian Molasse Basin. Austrian J Earth Sci 106:115–136

    Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  Google Scholar 

  • Hinrichs K-U, Hayes JM, Bach W, Spivack AJ, Hmelo LR, Holm NG, Johnson CG, Sylva S (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci USA 103:14684–14689

    Article  Google Scholar 

  • Hoering TC (1984) Thermal reactions of kerogen with added water, heavy water and pure organic substances. Org Geochem 5:267–278

    Article  Google Scholar 

  • Huang H, Larter S (2014) Secondary microbial gas formation associated with biodegraded oils from the Liaohe Basin, NE China. Org Geochem 68:39–50

    Article  Google Scholar 

  • Hubbard SM, De Ruig MJ, Graham SA (2005) Utilizing outcrop analogs to improve subsurface mapping of natural gas-bearing strata in the Puchkirchen Formation, Molasse Basin, Upper Austria. Austrian J Earth Sci 98:52–66

    Google Scholar 

  • Hubbard SM, De Ruig MJ, Graham S (2009) Confined channel-levee complex development in an elongate depo-center: deep-water Tertiary strata of the Austria Molasse basin. Mar Pet Geol 26:85–112

    Article  Google Scholar 

  • James AT (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bull 67:1176–1191

    Google Scholar 

  • James AT (1990) Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. AAPG Bull 74:1441–1458

    Google Scholar 

  • James AT, Burns BJ (1984) Microbial alteration of subsurface natural gas accumulations. AAPG Bull 68:957–960

    Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–181

    Article  Google Scholar 

  • Kamyar HR (2000) Verteilung der Untergrundstemperaturen an den Beispielen der Bohrlochtemperatur (BHT)—Messungen in den RAG—Konzessionen Oberösterreichs und Salzburgs, (Molasse- und Flyschzone). Ph.D. thesis, University of Vienna, Austria

  • Kniemeyer O, Musat F, Sievert S, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye S, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulfate-reducing bacteria. Nature 449:898–901

    Article  Google Scholar 

  • Krooss BM, Leythaeuser D, Schaefer RG (1988) Light hydrocarbon diffusion in a caprock. Chem Geol 71:65–76

    Article  Google Scholar 

  • Krooss BM, Littke R, Miiller B, Frielingsdorf J, Schwochau K, Idiz EF (1995) Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chem Geol 126:291–318

    Article  Google Scholar 

  • Lewan MD (1993) Laboratory Simulation of Petroleum Formation. In: Engel MH, Macko SA (eds) Organic geochemistry-principles and applications. Plenum Press, New York, pp 419–422

    Chapter  Google Scholar 

  • Lewan MD (1997) Experiments on the role of water in petroleum formation. Geochim Cosmochim Acta 61:3691–3723

    Article  Google Scholar 

  • Leythaeuser D, Schaefer RG, Pooch H (1983) Diffusion of light hydrocarbons in subsurface sedimentary rocks. AAPG Bull 67:889–895

    Google Scholar 

  • Littke R, Krooss BM, ldiz E, Frielingsdorf J (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. AAPG Bull 79:410–430

    Google Scholar 

  • Malzer O, Rögl F, Seifert P, Wagner L, Wessely G, Brix F (1993) Muttergesteine, speichergesteine, migration und lagerstättenbildung in der molassezone und deren sedimentärem untergrund. In: Brix F, Schultz O (eds) Erdöl und Erdgas in Österreich, 2 Auflage, Wien, pp 302–315

  • Masalimova LU, Lowe DR, McHargue T, Derksen R (2015) Interplay between an axial channel belt, slope gullies and overbank deposition in the Puchkirchen Formation in the Molasse Basin, Austria. Sedimentology 62:1717–1748

    Article  Google Scholar 

  • Milkov AV (2010) Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): significance for formation of giant Cenomanian gas pools. AAPG Bull 94:1485–1541

    Article  Google Scholar 

  • Milkov AV (2011) Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org Geochem 42:184–207

    Article  Google Scholar 

  • Ni Y, Ma Q, Ellis GS, Dai J, Katz B, Zhang S, Tang Y (2011) Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems. Geochim Cosmochim Acta 75:2696–2707

    Article  Google Scholar 

  • Oremland RS, Whiticar MJ, Strohmaier FE, Kiene RP (1988) Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim Cosmochim Acta 52:1895–1904

    Article  Google Scholar 

  • Palmer SE (1993) Effect of biodegradation and water washing on crude oil composition. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 511–533

    Chapter  Google Scholar 

  • Prinzhofer A, Pernaton É (1997) Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem Geol 142:193–200

    Article  Google Scholar 

  • Pytlak L, Gross D, Bechtel A, Gratzer R, Sachsenhofer RF, Linzer H-G, Grundtner M-L, Scheucher L (2014) Origin and alteration of natural gas and liquid hydrocarbons accumulated in the Austrian molasse basin. In: AAPG international conference and exhibition, Sept 16th, Istanbul, Turkey

  • Pytlak L, Gross D, Sachsenhofer RF, Bechtel A, Gratzer R, Linzer H-G (2016) Generation, mixing and alteration of thermogenic and microbial gas in oil deposits: the case of the Alpine Foreland Basin (Austria). Mar Pet Geol 78:575–592

    Article  Google Scholar 

  • Radke J, Bechtel A, Gaupp R, Püttmann W, Schwark L, Sachse D, Gleixner G (2005) Correlation between hydrogen isotope ratios of lipid biomarkers and sediment maturity. Geochim Cosmochim Acta 69:5517–5530

    Article  Google Scholar 

  • Reischenbacher D, Sachsenhofer RF (2011) Entstehung von Erdgas in der oberosterreichischen Molassezone: daten und offene Fragen. Berg- und Huttenmannische Monatshefte 156:463–468

    Article  Google Scholar 

  • Rice DD, Claypool GE (1981) Generation accumulation, and resource potential of biogenic gas. AAPG Bull 65:5–25

    Google Scholar 

  • Rooney MA, Claypool GE, Chung HM (1995) Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol 126:219–232

    Article  Google Scholar 

  • Sachsenhofer RF, Schulz H-M (2006) Architecture of Lower Oligocene source rocks in the Alpine Foreland Basin: a model for syn- and post-depositional source-rock features in the Paratethyan realm. Pet Geosci 12:363–377

    Article  Google Scholar 

  • Sachsenhofer RF, Leitner B, Linzer H-G, Bechtel A, Coric S, Gratzer R, Reischenbacher D, Soliman A (2010) Deposition, erosion and hydrocarbon source potential of the oligocene eggerding formation (Molasse Basin, Austria). Austrian J Earth Sci 103:76–99

    Google Scholar 

  • Schimmelmann A, Boudou J-P, Lewan MD, Wintsch RP (2001) Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Org Geochem 32:1009–1018

    Article  Google Scholar 

  • Schimmelmann A, Sessions AL, Boreham CJ, Edwards DS, Logan GA, Summons RE (2004) D/H ratios in terrestrially sourced petroleum systems. Org Geochem 35:1169–1195

    Article  Google Scholar 

  • Schoell M (1977) Die Erdgase der süddeutschen Molasse—Anwendung von D/H- und 13C-/12C Isotopenanalysen zur Klärung ihrer Entstehung. Erdöl Erdgas Z 93:311–322

    Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    Article  Google Scholar 

  • Schoell M (1983) Genetic characterization of natural gases. AAPG Bull 67:2225–2238

    Google Scholar 

  • Schoell M (1984) Wasserstoff und kohlenstoffisotope in organischen substanzen. Erdolen und Erdgasen. Geol Jahrb Reihe D 67, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

  • Schulz H-M, van Berk W (2009) Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part II: retracing gas generation and filling history by mass balancing of organic carbon conversion applying hydrogeochemical modelling. Mar Pet Geol 26:1180–1189

    Article  Google Scholar 

  • Schulz H-M, Sachsenhofer RF, Bechtel A, Polesny H, Wagner L (2002) The origin of hydrocarbon source rocks in the Austrian Molasse Basin. Mar Pet Geol 19:683–709

    Article  Google Scholar 

  • Seewald JS, Benitez-Nelson B, Whelan JK (1998) Laboratory and theoretical constrains on the generation and composition of natural gas. Geochim Cosmochim Acta 62:1599–1617

    Article  Google Scholar 

  • Sessions AL, Sylva SP, Summons RE, Hayes JM (2004) Isotopic exchange of carbon-bound hydrogen over geologic timescales. Geochim Cosmochim Acta 68:1545–1559

    Article  Google Scholar 

  • Stahl WJ (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem Geol 20:121–149

    Article  Google Scholar 

  • Tang Y, Perry JK, Jenden PD, Schoell M (2000) Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim Cosmochim Acta 64:2673–2687

    Article  Google Scholar 

  • Tang Y, Huang Y, Ellis GS, Wang Y, Kralert PG, Gillaizeau B, Ma Q, Hwang R (2005) A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil. Geochim Cosmochim Acta 69:4505–4520

    Article  Google Scholar 

  • Veron J (2005) The Alpine Molasse Basin—review of petroleum geology and remaining potential. Bull Angew Geol 10:75–86

    Google Scholar 

  • Wagner LR (1996) Stratigraphy and hydrocarbons in upper Austrian Molasse Foredeep (active margin). In: Wessely G, Liebl W (eds) Oil and gas in alpidic thrust belts and Basins of Central and Eastern Europe, vol 5. European Association of Geoscientists and Engineers Special Publication, London, pp 217–235

    Google Scholar 

  • Wagner LR (1998) Tectono-stratigraphy and hydrocarbons in the Molasse Foredeep of Salzburg, upper and lower Austria. In: Mascle A, Puigdefabregas C, Luterbacher HP, Fernandez M (eds) Cenozoic foreland basins of Western Europe, vol 134. Geological Society Special Publications, London, pp 339–369

    Google Scholar 

  • Whiticar MJ (1994) Correlation of natural gases with their sources. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap, vol 60. AAPG Memoir, Tulsa, pp 261–283

    Google Scholar 

  • Whiticar MJ, Suess E (1990) Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Appl Geochem 5:135–147

    Article  Google Scholar 

  • Whiticar MJ, Faber E, Scheoll M (1986) Microbial methane formation in marine and freshwater environments: carbon dioxide reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  Google Scholar 

  • Wiggins WD, Harris PM, Burruss RC (1993) Geochemistry of post-uplift calcite in the Permian Basin of Texas and New Mexico. Geol Soc Am Bull 105:779–790

    Article  Google Scholar 

  • Xia X, Tang Y (2012) Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption. Geochim Cosmochim Acta 77:489–503

    Article  Google Scholar 

  • Yoneyama Y, Okamura M, Morinaga K, Tsubaki N (2002) Role of water in hydrogenation of coal without catalyst assition. Energy Fuel 16:48–53

    Article  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaells W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  Google Scholar 

  • Zhang T, Krooss BM (2001) Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochim Cosmochim Acta 65:2723–2742

    Article  Google Scholar 

Download references

Acknowledgements

The presented data were obtained within the frame of FFG bridge Project 836527 between Montanuniversitaet Leoben and Rohöl-Aufsuchungs AG. The authors would like to thank Rohöl-Aufsuchungs AG for access to samples, geological documentation and publication permission. Fruitful discussion with Werner Tschelaut, Wilma Troiss, Alan Reingruber and Lorenz Scheucher (Rohöl-Aufsuchungs AG), Marie-Louise Grundtner (Montanuniversitaet Leoben), Andrea Gruner (GFZ German Research Centre for Geosciences), Heinz Wilkes (Oldenburg University) improved this paper. The article was improved considerably by review of Dr. Gabor C. Tari and anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pytlak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pytlak, L., Gross, D., Sachsenhofer, R.F. et al. Gas accumulations in Oligocene–Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation. Int J Earth Sci (Geol Rundsch) 106, 2171–2188 (2017). https://doi.org/10.1007/s00531-016-1421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1421-1

Keywords

Navigation