Skip to main content
Log in

New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Southern Gemericum basement in the Inner Western Carpathians, composed of low-grade volcano-sedimentary rock complexes, constitutes a record of the polyphase Cambrian–Ordovician continental volcanic arc volcanism. These metavolcanic rocks are characterized by the enrichment in K, Rb, Ba, Th and Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb that are the characteristic features for volcanic arc magmatites. The new SHRIMP U–Pb zircon data and compilation of previously published and re-evaluated zircon ages, contribute to a new constrain of the timing of the Cambrian–Ordovician volcanism that occurred between 496 and 447 Ma. The following peaks of the volcanic activity of the Southern Gemericum basement have been recognized: (a) mid-late Furongian at 492 Ma; (b) Tremadocian at 481 Ma; (c) Darriwilian at 464 Ma prolonged to 453 Ma within the early Upper Ordovician. The metavolcanic rocks are characterized by a high zircon inheritance, composed of Ediacaran (650–550 Ma), Tonian–Stenian (1.1–0.9 Ma), and, to a lesser extent, Mesoproterozoic (1.3 Ga), Paleoproterozoic (1.9 Ga) and Archaean assemblages (2.6 Ga). Based on the acquired zircon populations, it could be deduced that Cambrian–Ordovician arc crust was generated by a partial melting of Ediacaran basement in the subduction-related setting, into which old crustal fragments were incorporated. The ascertained zircon inheritances with Meso-, Paleoproterozoic and Archaean cores indicate the similarities with the Saharan Metacraton provenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abati J, Aghzer AM, Gerdes A, Ennih N (2012) Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from Anti-Atlas belt. Precambrian Res 212–213:263–274

    Article  Google Scholar 

  • Abdesalan MG, Liègeois JP, Stern RJ (2002) The Saharan metacraton. J Afr Earth Sci 34:119–136. doi:10.1016/SO899-5362(02)00013-1

    Article  Google Scholar 

  • Abonyi A (1971) Stratigraphic and tectonic evolution of the Gemeric Carboniferous at west from the Štítnik Fault. Geologické Práce Správy 57:339–348 (in Slovak)

    Google Scholar 

  • Andrusov D (1968) Grundriss der Tektonik der Nördlichen Karpaten. Slovak Academy of Sciences, Bratislava, p 188

    Google Scholar 

  • Arculus RJ, Powell R (1986) Source component mixing in the regions of magma generation. J Geophys Res 91:5913–5926

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholitic crystal mushes. J Petrol 45(8):1565–1582. doi:10.1093/petrology/egh019

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285. doi:10.1093/petrology/egn068

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. Contrib Mineral Petrol 149:338–349

    Article  Google Scholar 

  • Bajaník Š, Hanzel V, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1983) Explanation to geological map of the Slovenské rudohorie Mts.—eastern part. D Štúr Inst Geol Publ House, Bratislava, p 223 (in Slovak)

    Google Scholar 

  • Bajaník Š, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1984) Geological map of the Slovenské rudohorie Mts.— eastern part, 1:50,000. D Štúr Inst Geol, Bratislava

    Google Scholar 

  • Balintoni I, Balica C (2013) Carpathian peri-Gondwanan terranes in the East Carpathians (Romania): a testimony of an Ordovician, North African orogeny. Gondwana Res 23:1053–1070

    Article  Google Scholar 

  • Barrett TJ, MacLean WH (1994) Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger volcanic rocks. In: Lentz DR (ed) Alteration and alteration processes associated with ore-forming systems. Short course notes no 11. Geological Association of Canada, Toronto, Ontario, pp 433–467

  • Be’eri-Shlevin Y, Avigad D, Gerdes A, Zlatkin O (2014) Detrital zircon U–PB–Hf systematics of Israeli coastal sands: new perspectives on the provenance on Nile sediments. J Geol Soc 171(1):107–116

    Article  Google Scholar 

  • Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996a) Explanation to geological map of Slovakia, 1:500,000. Dionýz Štúr Publisher, Bratislava, p 76

    Google Scholar 

  • Biely A, Bezák V, Elečko M, Gross P, Kaličiak M, Konečný V, Lexa J, Mello J, Nemčok J, Potfaj M, Rakús M, Vass D, Vozár J, Vozárová A (1996b) Geological map of Slovakia: Ministry of the environment of Slovak Republic. Geological Survey of Slovak Republic, Bratislava

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2451(03)00165-7

    Article  Google Scholar 

  • Brown SJ, Fletcher IR (1999) SHRIMP U–Pb dating of the pre-eruption growth history of zircons from 340 ka Whakamura ignimbrite, New Zealand: evidence for >250 k.y. magma resistance time. Geology 27:1035–1038

    Article  Google Scholar 

  • Brown GC, Thorp RS, Webb PC (1984) The geochemical characteristic of granitoides in contrasting arcs and comments on magma source. J Geol Soc Lond 141:413–426

    Article  Google Scholar 

  • Christiansen EH (2005) Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites. Geol Magazine 142:669–681

    Article  Google Scholar 

  • Christiansen EH, McCurry M (2008) Contrasting origin of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull Volcanol 70:251–267

    Article  Google Scholar 

  • Cordani UG, Teixeira W (2007) Proterozoic accretionary belts in the Amazonian Craton. Geol Soc Am Mem 200:297–320

    Article  Google Scholar 

  • Cordani UG, Teixeira W, D’Agrella-Filho MS, Trindale RI (2009) The position of the Amazonian Craton in supercontinents. Gondwana Res 15:396–407

    Article  Google Scholar 

  • Čorná O, Kamenický L (1976) Ein beitrag zur Stratigraphie des Kristallinikums der Westkarpaten auf Grund der Palinology. Geol Zborn Geol Carpath 27:117–132

    Google Scholar 

  • Dallmayer RD, Neubauer F, Handler R, Fritz H, Müller W, Pana D, Putiš M (1996) Tectonothermal evolution of the internal Alps and Carpathians: evidence from 40Ar/39Ar mineral and whole rock data. Eclogae Geol Helv 89:203–227

    Google Scholar 

  • Dallmayer RD, Németh Z, Putiš M (2005) Regional tectonothermal events in Gemericum and adjacent units (Western Carpathians, Slovakia): contribution by 40Ar/39Ar dating. Slovak Geol Mag 11(2–3):155–163

    Google Scholar 

  • Faryad SW (1991) Metamorphism of the Early Paleozoic sedimentary rocks in the Gemericum. Miner Slov 23:315–324

    Google Scholar 

  • Faryad SW, Henjes-Kunst F (1997) K-Ar and 40Ar/39Ar constraints for the tectonothermal evolutions of the high-pressure Meliata Unit, Western Carpathians (Slovakia). Tectonophysics 280(4):141–156

    Article  Google Scholar 

  • Fernández-Suárez J, Guttiérez-Alonso G, Jeffries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204:75–88

    Article  Google Scholar 

  • Fernández-Suárez J, Guttiérez-Alonso G, Pastor-Galán D, Hofmann M, Murphy JB, Linnemann U (2014) The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. Int J Earth Sci (Geol Rundsch) 103:1335–1357

    Article  Google Scholar 

  • Finger F, Broska I (1999) The Gemeric S-type granites in southeastern Slovakia: late Paleozoic or Alpine intrusion? Evidence from electron-microprobe dating of monazite. Schweiz Mineral Petrogr Mitt 79:439–443

    Google Scholar 

  • Finger F, Broska I, Haunschmid B, Hraško Ľ, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathians basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci (Geol Rundsch) 92:86–98

    Google Scholar 

  • Gibson HL, Watkinson DH, Comba CDA (1983) Silicification: hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Econ Geol 78:954–971

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:1047–1050

    Article  Google Scholar 

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Article  Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Jenner GA, Tubrett MN, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin. Tectonophysics 365:221–232. doi:10.1016/S0040-1951(03)00023-4

    Article  Google Scholar 

  • Haas J (2001) Structural units and main stages of the structural evolution. In: Haas J (ed) Geology of hungary. Eotvos University Press, Budapest, pp 19–22

  • Henderson BJ, Collins WJ, Murphy JB, Gutiérrez-Alonso G, Hand M (2015) Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics. doi:10.1016/j.tecto.2015.11.020

    Google Scholar 

  • Heumann A, Davies GR (1997) Isotopic and chemical evolution of the post-caldera rhyolitic system at Long Valley, California. J Petrol 38:1661–1678

    Article  Google Scholar 

  • Iizuka T, Campbell IH, Allen CM, Gill JB, Maruyama S, Makoka F (2013) Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochim Cosmochim Acta 107:96–120

    Article  Google Scholar 

  • International Commission on Stratigraphy. International Chronostratigraphic Chart v 2016/04). http://www.stratigraphy.org/ICSchart/ChronostratChart 2016-04.pdf

  • Ivan P (1994) Early Paleozoic of the Gemeric Unit (Inner western Carpathians): geodynamic setting as inferred from metabasalts geochemistry data. Mitt Öst Geol Gesell 86:3–31

    Google Scholar 

  • Ivanička J, Snopko L, Snopková P, Vozárová A (1989) Gelnica Group, Lower unit of the Spišsko-gemerské rudohorie Mts. (Early Paleozoic, West Carpathians). Geol Zborn Geol Carpath 40:195–219

    Google Scholar 

  • Janik T, Grad M, Guterch A, Vozár J, Bielik M, Vozárová A, Hegedüs E, Kovács CA, Kovács I (2011) Crustal structure of the Western Carpathians and Pannonian Basin: seizmic model from CELEBRATION 2000 data and geological implications. J Geodyn 52:97–113

    Article  Google Scholar 

  • Jenner GA, Dunnlang GR, Malpas J, Brown M, Brace T (1991) Bay of Islands and Little Port complexes revisited: age, geochemical and isotopic evidence confirm supra-subduction-zone origin. Can J Earth Sci 28:1635–1652

    Article  Google Scholar 

  • Jeřábek P, Faryad WS, Schulmann K, Lexa O, Tajčmanová L (2008) Alpine burial and heterogeneous exhumation of Variscan crust in the West Carpathians insight from thermodynamic and argon diffusion modelling. J Geol Soc Lond 165:479–498. doi:10.1144/0016-76492006-165

    Article  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1, Paper #1999GC000014

  • Kohút M, Stein H (2005) Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineral Petrol 85:117–129. doi:10.1007/s00710-005-0082-8

    Article  Google Scholar 

  • Kuznetsov NB, Natapov I, Belousova EA, O’Reilly SY, Griffin WL (2010) Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models. Gondwana Res 17:583–601

    Article  Google Scholar 

  • Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In: Gee DG, Pease VL (eds) The Neoproterozoic Timanide Orogen of eastern Baltica. Geol Soc Lond Mem 30:69–74

  • Lexa O, Schulmann K, Ježek J (2003) Cretaceous collision and indentation in the West Carpathians: view based on structural analysis and numerical modeling. Tectonics 22(6):1066. doi:10.1029/2002TC001472

    Article  Google Scholar 

  • Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and paleogeography. Earth Sci Rev 112:126–154

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian orogen: Neoproterozoic to Cambrian crustal growth and orogenic zoning along peripheral of the West African Craton—constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambriam Res 244(214):236–278

    Article  Google Scholar 

  • Ludwig KR (2005a) SQUID 1.12 A User’s Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. pp 22. http://www.bgc.org/klprogrammenu.html

  • Ludwig KR (2005b) User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. pp 71. http://www.bgc.org/klprogrammenu.html

  • Ludwig KR (2012) Isoplot 3.75, A geochronological Toolkit for MicrosoftExcel, Berkeley Geochronology Centre, Special Publication No. 5, rev January 30, 2

  • MacLean WH (1990) Mass change calculations in altered rock series. Miner Depos 25:44–49

    Article  Google Scholar 

  • Mahel M (1986) Geological structure of the Czechoslovak Carpathians, Part 1: Paleoalpine units. Monograph. Veda Publishing House, Bratislava, p 503 (in Slovak)

    Google Scholar 

  • Maluski H, Rajlich P, Matte P (1993) 40Ar/39Ar dating of Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics 223:213–337

    Article  Google Scholar 

  • Matteini M, Junges SL, Dantas EL, Pimentel MM, Bühn B (2010) In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: insights on the crustal evolution of the Neoproterozoi Goiás Magmatic Arc, Brasília belt, central Brazil. Gondwana Res 17:1–12

    Article  Google Scholar 

  • Matura A, Császár G, Kröll A, Vozár J, Wessely G (2000) Map of pre-Teriary basement. Danube Region Environmental Geology Program, DANREG: Explanatory Notes, Jahrbuch GBA, Band 142/4:465–482

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:228

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. doi:10.1029/2000GC000109

    Google Scholar 

  • Meinhold G, Kostopoulos D, Frei D, Himmerkus F, Reischmann T (2010) U–Pb LA–SF–ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: paleotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int J Earth Sci (Geol Rundsch) 99:813–832

    Article  Google Scholar 

  • Molák B, Buchardt B (1996) Stable isotope composition of carbon in selected carbonaceous units of Slovakia with reference to Úrkút (Hungary) and Copperbelt (Zambia) examples. Slovak Geol Mag 1:27–43

    Google Scholar 

  • Murphy JB, Nance RD (1989) Model for evolution of the Avalonian–Cadomian belt. Geology 17:735–738

    Article  Google Scholar 

  • Murphy JB, Pisareversusky S, Nance RD (2013) Potential geodynamic relationship between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana. Mineral Petrol 107:635–650

    Article  Google Scholar 

  • Nance RD, Murphy JB (1994) Contrasting basement signatures and palinspastic restoration of peripheral orogens: an example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22:617–620

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos R, Pisareversusky SA (2008) Neoproterozoic-early Paleozoic tectonostratigraphy and paleogeography of the peri-Gondwanan terranes: Amazonian versus West African connections. Geol Soc Lond Spec Publ 297:345–383

    Article  Google Scholar 

  • Neubauer F, Frisch W, Hansen BT (2002) Early Paleozoic tectonothermal events in basement complexes of the eastern Greywacke Zone (Eastern Alps): evidence from U–Pb zircon data. Int J Earth Sci (Geol Rundsch) 91:775–786

    Article  Google Scholar 

  • Pearce JA (1983) Role of subcontinental lithosphere in magma genesis at active continental margin. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and Mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA (1996a) A User’s Guide to basalt Discrimination diagrams In: Wymann DA (ed) Trace element geochemistry of Volcanic rocks: applications for massive Sulphide exploration. Geo Assoc Canada, Short Course Note v 12 pp 79–113

  • Pearce JA (1996b) Sources and settings of granitic rocks. Episodes 19(4):120–125

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications for the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Piercey SJ, Nelson JL, Colpron M, Dusel-Bacon C, Simard R-L, Roots CF (2006) Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera. In: Colpron M, Nelson JL (eds) Paleozoic Evolution and Metallogeny of Pericratonic Terranes at Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera. Geol Assoc Canada, Spec Pap 45: 281–322

  • Pimentel MM, Rodrigues JB, DellaGiustina MES, Junges S, Matteini M, Amstrong R (2011) The tectonic evolution of the Neoproterozoic Brasilia Belt, central Brazil, based on SHRIMP and LA-ICPMS-U–Pb sedimentary provenance data. Rev J South Am Earth Sci 31:345–357

    Article  Google Scholar 

  • Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Mineralia Slovaca Monograph, Bratislava, pp 1–24

  • Putiš M, Sergeev S, Ondrejka M, Larionov M, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian–Ordovician metaigneous rocks associated with Cadomian fragments in the Western Carpathians basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59:3–18

    Google Scholar 

  • Putiš M, Frank W, Plašienka D, Siman P, Sulák M, Biroň A (2009) Progradation of the Alpidic orogenic wedge related to two subductions: constrained by 40Ar/39Ar ages of white mica. Geodin Acta 22(1–3):31–56. doi:10.3166/ga.22.31-56

    Google Scholar 

  • Radvanec M, Konečný P, Ondrejka M, Putiš M, Uher P, Németh Z (2009) Gemeric granites as an indicator of the crustal extension above the Late Variscan subduction zone and during the Early Alpine riftogenesis (Western Carpathians): an interpretation from monazite and zircon ages dated by CHIME and SHRIMP methods. Miner Slov 41:381–394 (in Slovak, English summary)

    Google Scholar 

  • Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. D. Štúr Publ, Bratislava, pp 15–26

    Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Colombia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Sassi FP, Vozárová A (1987) The pressure character of the Hercynian metamorphism in the Gemericum (West Carpathians, Czechoslovakia). Rend Soc Ital Min Petrol 42:73–81

    Google Scholar 

  • Schaltegger U, Nägler TF, Corfu F, Maggetti M, Galetti G, Stoch HG (1997) A Cambrian island arc in the Silvretta nappe: constraints from geochemistry and geochronology. Schweiz Mineral Petrogr Mitt 73:337–350

    Google Scholar 

  • Scotese CR (2004) A continental drift flipbook. J Geol 152:729–749

    Article  Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117:331–344

    Article  Google Scholar 

  • Snopko L (1967) Lithological characteristics of the Gelnica Serie. Západné Karpaty Sér Geol 7:103–152 (in Slovak)

    Google Scholar 

  • Snopko L, Ivanička J (1978) Consideration about paleogeography of the Early Paleozoic rocks of the Spišsko gemerské rudohorie Mts. In: Vozár J, Mišík M, Marschalko R (eds) Paleogeographic development of the Western Carpathians. D Štúr Inst Geol, Bratislava, pp 269–279 (in Slovak, English summary)

    Google Scholar 

  • Snopková P, Snopko L (1979) Biostratigraphy of Gelnica Serie in the Spišsko-gemerské rudohorie Mts. based on palynological study. Západné Karpaty Sér Geol 5:57–102 (in Slovak)

    Google Scholar 

  • Soták J, Vozárová J, Ivanička J (1999) New microfossils from the Early Paleozoic formations of the Gemericum. Geol Carpath 50(Spec Iss):72–74

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotope systematic of oceanic basalts implications for mantle composition and processes. In: Sounders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Talavera C, Montero P, Bea F, Gonzáles Lodeiro F, Whitehouse M (2013) U–Pb zircon geochronology of the Cambro–Ordovician metagranites and metavolcanic rocks of central and NW Iberia. Int J Earth Sci (Geol Rundsch) 102:1–23. doi:10.1007/s00531-012-0788-x

    Article  Google Scholar 

  • Thompson MD, Barr SM, Grunow AM (2012) Avalonian perspectives an Neoproterozoic paleogeography: evidence from Sm–Nd isotope geochemistry and detrital zircon geochronology in SE New England, USA. Bull Geol Soc Am 124:517–531

    Article  Google Scholar 

  • Ustaömer PA, Ustaömer T, Gerdes A, Zulauf G (2011) Detrital zircon ages from a Lower Ordovician quartzite of the Istanbul exotic terrane (NW Turkey): evidence for Amazonian affinity. Int J Earth Sci (Geol Rundsch) 100:23–41. doi:10.1007/s00531-009-0498-1

    Article  Google Scholar 

  • vonRaumer JF, Bussy F, Schaltegger V, Schultz B, Stampfli GM (2013) Pre-Mesozoic Alpine basement—their place in the European Paleozoic framework. Geol Soc Am Bull 125:89–108

    Article  Google Scholar 

  • Vozár J, Tomek Č, Vozárová A, Dvořáková V (1995) Deep seismic profile G: Geological interpretation (Inner Western Carpathians). Spec Publ Geol Soc Greece, 4(1), XVth Congress of CBGA, Athens, pp 34–37

  • Vozárová A (1993a) Variscan metamorphism and crustal evolution of the Gemericum. Západné Karpaty Sér Min Petr Geoch Metalog 16:55–117 (in Slovak, English summary)

    Google Scholar 

  • Vozárová A (1993b) Provenance of Gelnica Group metasandstones and relationship to paleotectonic of the sedimentary basin. Západné Karpaty Sér Min Petr Geoch Metalog 16:5–54 (in Slovak, English summary)

    Google Scholar 

  • Vozárová A, Ivanička J (1996) Geodynamic setting of the Gelnica Group acid volcanism. Slovak Geol Mag 3–4:245–250

    Google Scholar 

  • Vozárová A, Soták J, Ivanička J (1998) A new microfauna from the Early Paleozoic of the Gemericum (foraminifera): constrains for another fossils or subfossils. In: Rakús M (ed) Geodynamic development of the Western Carpathians. D Štúr Publ, Bratislava, pp 63–74

    Google Scholar 

  • Vozárová A, Konečný P, Vozár J, Šmelko M (2008) Upper Jurassic-Lower Cretaceous tectonothermal events in the Southern Gemeric Permian rocks deduced from electron microprobe dating of monazite (Western Carpathians, Slovakia). Geol Carpath 59:89–102

    Google Scholar 

  • Vozárová A, Šmelko M, Paderin I (2009) Permian single crystal U–Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia). Geol Carpath 60(6):439–448. doi:10.2478/v10096-009-0032-1

    Article  Google Scholar 

  • Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian/Ordovician magmatic arc volcanism in the Southern Gemeric basement, Western Carpathians, Slovakia: U–Pb (SHRIMP) data from zircon. Int J Earth Sci (Geol Rundsch) 99(Suppl 1):17–37. doi:10.1007/s00531-009-0454-0

    Article  Google Scholar 

  • Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012) U–Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): evidence for Avalonian–Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936. doi:10.1007/s00531-011-0705-8

    Article  Google Scholar 

  • Vozárová A, Konečný P, Šarinová K, Vozár J (2014) Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch) 103:1005–1022. doi:10.1007/s00531-014-1009-6

    Article  Google Scholar 

  • Walsh GJ, Benziane F, Alejnikoff JN, Harrison RW, Yazidi A, Burton WC, Quick JE, Saadane A (2012) Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Res 216–219:23–62

    Article  Google Scholar 

  • Wiedenbeck M, Alleé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb Geochronology by ion microprobe. Applications in microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elementes. Chem Geol 20:325–343

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Paleozoic accretion of Gondwana-derived terranes of the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson R (eds) European lithosphere dynamics. Geol Soc Lond Mem vol 32. pp 323–332

  • Wood DA, Joron JL, Treuil M (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci Lett 45:326–336

    Article  Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implication for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Slovak Research and Development Support Agency (Project ID: APVV-0546-11) is gratefully acknowledged. The authors would like to thank M. Kohút and L. Krmíček for constructive reviews which led to significant improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vozárová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozárová, A., Rodionov, N., Šarinová, K. et al. New zircon ages on the Cambrian–Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106, 2147–2170 (2017). https://doi.org/10.1007/s00531-016-1420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1420-2

Keywords

Navigation