Skip to main content
Log in

A review of definitions of the Himalayan Main Central Thrust

  • Review Article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Most workers regard the Main Central Thrust (MCT) as one of the key high strain zones in the Himalaya because it accommodated at least 90 km of shortening, because that shortening exhumed and buried hanging wall and footwall rocks, and due to geometric and kinematic connections between the Main Central Thrust and the structurally overlying South Tibet Detachment. Geologists currently employ three unrelated definitions of the MCT: metamorphic-rheological, age of motion-structural, or protolith boundary-structural. These disparate definitions generate map and cross-section MCT positions that vary by up to 5 km of structural distance. The lack of consensus and consequent shifting locations impede advances in our understanding of the tectonic development of the orogen. Here, I review pros and cons of the three MCT definitions in current use. None of these definitions is flawless. The metamorphic-rheological and age of motion-structural definitions routinely fail throughout the orogen, whereas the protolith boundary-structural definition may fail only in rare cases, all limited to sectors of the eastern Himalaya. Accordingly, a definition based on high strain zone geometry and kinematics combined with identification of a protolith boundary is the best working definition of the MCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Webb (2013)

Fig. 2

Modified from McQuarrie et al. (2014)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geol Soc Am Bull 112:467–477. doi:10.1130/0016-7606(2000)112<467:ICOTSR>2.0.CO;2

    Article  Google Scholar 

  • Arita K (1983) Origin of the inverted metamorphism of the lower Himalayas, central Nepal. Tectonophysics 95:43–60. doi:10.1016/0040-1951(83)90258-5

    Article  Google Scholar 

  • Auden JB (1937) The structure of the Himalaya in Garhwal. Rec Geol Surv India 71:407–433

    Google Scholar 

  • Bhattacharyya K, Mitra G (2009) A new kinematic evolutionary model for the growth of a duplex—an example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Res 16:697–715. doi:10.1016/j.gr.2009.07.006

    Article  Google Scholar 

  • Bollinger L, Henry P, Avouac J (2006) Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet Sci Lett 244:58–71. doi:10.1016/j.epsl.2006.01.045

    Article  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sediment Geol 84:1–35. doi:10.1016/0037-0738(93)90042-4

    Article  Google Scholar 

  • Burchfiel BC, Royden LH (1985) North–south extension within the convergent Himalayan region. Geology 13:679–682. doi:10.1130/0091-7613(1985)13<679:NEWTCH>2.0.CO;2

    Article  Google Scholar 

  • Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH, Deng C, Xu J (1992) The South Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt, vol 269. Geological Society of Amercia Special Paper, Boulder, p 41. doi:10.1130/SPE269

  • Caby R, Pecher A, Le Fort P (1983) Le grand chevauchement central himalayen: nouvelles donnees sur le metamorphisme inverse a la base de la Dalle du Tibet. Revue de geologie dynamique et de geographie physique 24:89–100

    Google Scholar 

  • Caddick M, Bickle M, Harris N, Holland T, Horstwood M, Parrish R, Ahmad T (2007) Burial and exhumation history of a Lesser Himalayan schist: recording the formation of an inverted metamorphic sequence in NW India. Earth Planet Sci Lett 264:375–390. doi:10.1016/j.epsl.2007.09.011

    Article  Google Scholar 

  • Callaway C (1883) The age of the newer gneissic rocks of the northern Highlands. Quart J Geol Soc 39:355–414. doi:10.1144/GSL.JGS.1883.039.01-04.24

    Article  Google Scholar 

  • Catlos EJ, Dubey CS, Harrison TM, Edwards MA (2004) Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. J Metamorph Geol 22:207–226. doi:10.1111/j.1525-1314.2004.00509.x

    Article  Google Scholar 

  • Cawood PA, Johnson MRW, Nemchin AA (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet Sci Lett 255:70–84. doi:10.1016/j.epsl.2006.12.006

    Article  Google Scholar 

  • Celerier J, Harrison TM, Beyssac O, Herman F, Dunlap WJ, Webb AAG (2009a) The Kumaun and Garwhal Lesser Himalaya, India: part 2. Thermal and deformation histories. Geol Soc Am Bull 121:1281–1297. doi:10.1130/B26343.1

    Article  Google Scholar 

  • Celerier J, Harrison TM, Webb AAG, Yin A (2009b) The Kumaun and Garwhal Lesser Himalaya, India: part 1. Structure and stratigraphy. Geol Soc Am Bull 121:1262–1280. doi:10.1130/B26344.1

    Article  Google Scholar 

  • Childs C, Manzocchi T, Walsh JJ, Bonson CG, Nicol A, Schopfer MPJ (2009) A geometric model of fault zone and fault rock thickness variations. J Struct Geol 31:117–127. doi:10.1016/j.jsg.2008.08.009

    Article  Google Scholar 

  • Corrie SL, Kohn MJ (2011) Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Geol Soc Am Bull 123:1863–1879. doi:10.1130/B30376.1

    Article  Google Scholar 

  • Cottle JM, Larson KP, Kellett DA (2015) How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J Struct Geol 78:119–133. doi:10.1016/j.jsg.2015.06.008

    Article  Google Scholar 

  • Davis GH, Reynolds SJ, Kluth C (2012) Structural geology of rocks and regions, 3rd edn. Wiley, Hoboken, p 839

    Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499. doi:10.1126/science.288.5465.497

    Article  Google Scholar 

  • DeCelles PG, Kapp P, Gehrels GE, Ding L (2014) Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33:824–849. doi:10.1002/2014TC003522

    Article  Google Scholar 

  • Dhital MR (2015) Geology of the Nepal Himalaya; regional perspective of the classic collided orogen. Springer, Cham, p 498. doi:10.1007/978-3-319-02496-7

  • Dubey AK, Bhakuni SS (2007) Younger hanging wall rocks along the Vaikrita thrust of the high Himalaya: a model based on inversion tectonics. J Asian Earth Sci 29:424–429. doi:10.1016/j.jseaes.2005.10.005

    Article  Google Scholar 

  • France-Lanord C, Derry L, Michard A (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. In: Himalayan Tectonics, vol 74. Geological Society, Special Publication, London, pp 603–621. doi:10.1144/GSL.SP.1993.074.01.40.

  • From R, Larson K (2014) Tectonostratigraphy, deformation, and metamorphism of the Himalayan mid-crust exposed in the Likhu Khola region, east-central Nepal. Geosphere 10:292–307. doi:10.1130/GES00938.1

    Article  Google Scholar 

  • From R, Larson K, Cottle JM (2014) Metamorphism and geochronology of the exhumed Himalayan midcrust, Likhu Khola region, east-central Nepal: recognition of a tectonometamorphic discontinuity. Lithosphere 6:361–376. doi:10.1130/L381.1

    Article  Google Scholar 

  • Fuchs G, Willems H (1990) The final stages of sedimentation in the Tethyan zone of Zanskar and their geodynamic significance (Ladakh-Himalaya). Jahrbuch der Geologischen Bundesanstalt, vol 133. Wien, pp 259–273

  • Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30:TC5016. doi:10.1029/2011TC002868

    Article  Google Scholar 

  • Gibson R, Godin L, Kellett DA, Cottle JM, Archibald D (2016) Diachronous deformation along the base of the Himalayan metamorphic core, west-central Nepal. Geol Soc Am Bull 128:860–878. doi:10.1130/B31328.1

    Article  Google Scholar 

  • Grujic D, Casey M, Davidson C, Hollister LS, Kundig R, Pavlis T, Schmid S (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43. doi:10.1016/0040-1951(96)00074-1

    Article  Google Scholar 

  • Gururajan NS, Choudhuri BK (2003) Geology and tectonic history of the Lohit Valley, eastern Arunachal Pradesh, India. J Asian Earth Sci 21:731–741. doi:10.1016/S1367-9120(02)00040-8

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res Solid Earth 103:27017–27032. doi:10.1029/98JB02468

    Article  Google Scholar 

  • Hayes CW (1891) The overthrust faults of the southern Appalachians. Geol Soc Am Bull 2:141–154. doi:10.1130/GSAB-2-141

    Article  Google Scholar 

  • He D, Webb AAG, Larson KP, Martin AJ, Schmitt AK (2015) Extrusion vs. duplexing models of Himalayan mountain building 3: duplexing dominates from the Oligocene to Present. Int Geol Rev 57:1–27. doi:10.1080/00206814.2014.986669

    Article  Google Scholar 

  • He D, Webb AAG, Larson KP, Schmitt AK (2016) Extrusion vs. duplexing models of Himalayan mountain building 2: the South Tibet detachment at the Dadeldhura klippe. Tectonophysics 667:87–107. doi:10.1016/j.tecto.2015.11.014

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya: geological observations of the Swiss expedition 1936, vol 73. Memoirs of the Swiss Society of Natural Sciences, Zurich, p 245

    Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350. doi:10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I (2015) Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43:859–862. doi:10.1130/G36872.1

    Article  Google Scholar 

  • Huang W, van Hinsbergen DJJ, Lippert PC, Guo Z, Dupont-Nivet G (2015) Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone: reconstructing India-Asia collision. Geophys Res Lett 42:2642–2649. doi:10.1002/2015GL063749

    Article  Google Scholar 

  • Imayama T, Arita K (2008) Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya. Tectonophysics 451:265–281. doi:10.1016/j.tecto.2007.11.051

    Article  Google Scholar 

  • Jade S, Mukul M, Bhattacharyya AK, Vijayan MSM, Jaganathan S, Kumar A, Tiwari RP, Kumar A, Kalita S, Sahu SC, Krishna AP, Gupta SS, Murthy MVRL, Gaur VK (2007) Estimates of interseismic deformation in Northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234. doi:10.1016/j.epsl.2007.08.031

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res Solid Earth 109:B06407. doi:10.1029/2003JB002811

    Article  Google Scholar 

  • Khanal S, Robinson DM, Mandal S, Simkhada P (2015) Structural, geochronological and geochemical evidence for two distinct thrust sheets in the ‘Main Central thrust zone', the Main Central thrust and Ramgarh-Munsiari thrust: Implications for upper crustal shortening in central Nepal. In: Mukherjee S, Carosi R, VanderBeek PA, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya. Geological Society Special Publication No. 412, The Geological Society, London, pp 221–245. doi:10.1144/SP412.2

  • Kohn MJ (2014) Himalayan metamorphism and its tectonic implications. Annu Rev Earth Planet Sci 42:381–419. doi:10.1146/annurev-earth-060313-055005

    Article  Google Scholar 

  • Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet Sci Lett 228:299–310. doi:10.1016/j.epsl.2004.10.007

    Article  Google Scholar 

  • Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2005) Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J Metamorph Geol 23:399–406. doi:10.1111/j.1525-1314.2005.00584.x

    Article  Google Scholar 

  • Lapworth C (1883) VI.—The secret of the highlands. Geol Mag 10(3):120–128. doi:10.1017/S0016756800164313

    Article  Google Scholar 

  • Larson KP, Cottle JM (2014) Midcrustal discontinuities and the assembly of the Himalayan midcrust. Tectonics 33:718–740. doi:10.1002/2013TC003452

    Article  Google Scholar 

  • Larson KP, Godin L (2009) Kinematics of the Greater Himalayan sequence, Dhaulagiri Himal: Implications for the structural framework of central Nepal. J Geol Soc 166:25–43. doi:10.1144/0016-76492007-180

    Article  Google Scholar 

  • Larson KP, Godin L, Price RA (2010) Relationships between displacement and distortion in orogens: linking the Himalayan foreland and hinterland in central Nepal. Geol Soc Am Bull 122:1116–1134. doi:10.1130/B30073.1

    Article  Google Scholar 

  • Larson KP, Cottle JM, Godin L (2011) Petrochronologic record of metamorphism and melting in the upper Greater Himalayan sequence, Manaslu-Himal Chuli Himalaya, west-central Nepal. Lithosphere 3:379–392. doi:10.1130/L149.1

    Article  Google Scholar 

  • Larson KP, Gervais F, Kellett DA (2013) A P–T–t–D discontinuity in east-central Nepal: implications for the evolution of the Himalayan mid-crust. Lithos 179:275–292. doi:10.1016/j.lithos.2013.08.012

    Article  Google Scholar 

  • Larson KP, Ambrose TK, Webb AAG, Cottle JM, Shrestha S (2015) Reconciling Himalayan midcrustal discontinuities: the Main Central thrust system. Earth Planet Sci Lett 429:139–146. doi:10.1016/j.epsl.2015.07.070

    Article  Google Scholar 

  • Law RD, Stahr DW III, Francsis MK, Ashley KT, Grasemann B, Ahmad T (2013) Deformation temperatures and flow vorticities near the base of the Greater Himalayan Series, Sutlej Valley and Shimla Klippe, NW India. J Struct Geol 54:21–53. doi:10.1016/j.jsg.2013.05.009

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275-A:1–44

    Google Scholar 

  • Long S, McQuarrie N, Tobgay T, Hawthorne J (2011a) Quantifying internal strain and deformation temperature in the eastern Himalaya, Bhutan: implications for the evolution of strain in thrust sheets. J Struct Geol 33:579–608. doi:10.1016/j.jsg.2010.12.011

    Article  Google Scholar 

  • Long S, McQuarrie N, Tobgay T, Grujic D (2011b) Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol Soc Am Bull 123:1427–1447. doi:10.1130/B30203.1

    Article  Google Scholar 

  • Long SP, McQuarrie N, Tobgay T, Coutand I, Cooper FJ, Reiners PW, Wartho J-A, Hodges KV (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics 31:TC5004. doi:10.1029/2012TC003155

    Article  Google Scholar 

  • Long SP, Gordon SM, Young JP, Soignard E (2016) Temperature and strain gradients through Lesser Himalayan rocks and across the Main Central thrust, south central Bhutan: implications for transport-parallel stretching and inverted metamorphism. Tectonics 35:1863–1891. doi:10.1002/2016TC004242

    Article  Google Scholar 

  • Martin AJ (2016) A review of Himalayan stratigraphy, magmatism, and structure: Gondwana Research, (in revision)

  • Martin AJ, DeCelles PG, Gehrels GE, Patchett PJ, Isachsen C (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944. doi:10.1130/B25646.1

    Article  Google Scholar 

  • Martin AJ, Ganguly J, DeCelles PG (2010) Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal. Contrib Miner Petrol 159:203–223. doi:10.1007/s00410-009-0424-3

    Article  Google Scholar 

  • Maruo Y, Pradhan BM, Kizaki K (1979) Geology of eastern Nepal: between Dudh Kosi and Arun. Bull Coll Sci Univ Ryukyus 28:155–191

    Google Scholar 

  • Mazur S, Mikolajczak M, Krzywiec P, Malinowski M, Buffenmyer V, Lewandowski M (2015) Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics 34:2465–2477. doi:10.1002/2015TC003934

    Article  Google Scholar 

  • Mazur S, Mikolajczak M, Krzywiec P, Malinowski M, Buffenmyer V, Lewandowski M (2016) Reply to Comment by M. Narkiewicz and Z. Petecki on “Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?”. Tectonics 35:1600–1607. doi:10.1002/2016TC004162

    Article  Google Scholar 

  • McConnell RG (1887) Report on the geological structure of a portion of the Rocky Mountains, accompanied by a section measured near the 51st parallel: Montreal, Geological and Natural History Survey of Canada, Annual Report Part D, p 41

  • McKenzie NR, Hughes NC, Myrow PM, Xiao S, Sharma M (2011) Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet Sci Lett 312:471–483. doi:10.1016/j.epsl.2011.10.027

    Article  Google Scholar 

  • McQuarrie N, Long SP, Tobgay T, Nesbit JN, Gehrels G, Ducea MN (2013) Documenting basin scale, geometry and provenance through detrital geochemical data: lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Res 23:1491–1510. doi:10.1016/j.gr.2012.09.002

    Article  Google Scholar 

  • McQuarrie N, Tobgay T, Long SP, Reiners PW, Cosca MA (2014) Variable exhumation rates and variable displacement rates: documenting recent slowing of Himalayan shortening in western Bhutan. Earth Planet Sci Lett 386:161–174. doi:10.1016/j.epsl.2013.10.045

    Article  Google Scholar 

  • Mitra G, Bhattacharyya K, Mukul M (2010) The Lesser Himalayan duplex in Sikkim: implications for variations in Himalayan shortening. J Geol Soc India 75:289–301

    Article  Google Scholar 

  • Mottram CM, Argles TW, Harris NBW, Parrish RR, Horstwood MSA, Warren CJ, Gupta S (2014) Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J Geol Soc 171:255–268. doi:10.1144/jgs2013-064

    Article  Google Scholar 

  • Mottram CM, Parrish RR, Regis D, Warren CJ, Argles TW, Harris NBW, Roberts NMW (2015) Using U-Th-Pb petrochronology to determine rates of ductile thrusting: time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics 34:1355–1374. doi:10.1002/2014TC003743

    Article  Google Scholar 

  • Mukherjee S (2013) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci 102:1851–1870. doi:10.1007/s00531-012-0861-5

    Article  Google Scholar 

  • Mukherjee S (2015) A review on out-of-sequence deformation in the Himalaya. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya, Geological Society, London, Special Publication, vol 412, p 67–109. doi: 10.1144/SP412.13

  • Mukherjee S, Koyi HA (2010) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303. doi:10.1007/s00531-009-0459-8

    Article  Google Scholar 

  • Murchison RI (1860) Supplemental observations on the order of the ancient stratified rocks of the north of Scotland, and their associated eruptive rocks. Quart J Geol Soc 16:215–240. doi:10.1144/GSL.JGS.1860.016.01-02.30

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SK, Thompson KR, Bowring SA, Peng S-C, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441. doi:10.1016/S0012-821X(03)00280-2

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Goodge JW, Fanning CM, Williams IS, Peng S, Bhargava ON, Parcha SK, Pogue KR (2010) Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geol Soc Am Bull 122:1660–1670. doi:10.1130/B30123.1

    Article  Google Scholar 

  • Nandini P, Thakur SS (2011) Metamorphic evolution of the Lesser Himalayan Crystalline Sequence, Siyom Valley, NE Himalaya, India. J Asian Earth Sci 40:1089–1100. doi:10.1016/j.jseaes.2010.12.005

    Article  Google Scholar 

  • Narkiewicz M, Petecki Z (2016) Comment on “Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?” by Mazur et al. Tectonics 35:1595–1599. doi:10.1002/2016TC004127

    Article  Google Scholar 

  • Nicol J (1861) On the structure of the north-western Highlands, and the relations of the gneiss, Red Sandstone, and quartzite of Sutherland and Ross-shire. Quart J Geol Soc 17:85–113. doi:10.1144/GSL.JGS.1861.017.01-02.11

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108:904–911. doi:10.1130/0016-7606(1996)108<0904:ICOTAA>2.3.CO;2

    Article  Google Scholar 

  • Parsons AJ, Law RD, Searle MP, Phillips RJ, Lloyd GE (2016a) Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, western region, Nepal. 1:2000,000. J Maps 12:100–110. doi:10.1080/17445647.2014.984784

    Article  Google Scholar 

  • Parsons AJ, Law RD, Lloyd GE, Phillips RJ, Searle MP (2016b) Thermo-kinematic evolution of the Annapurna-Dhaulagiri Himalaya, central Nepal: the Composite Orogenic System. Geochem Geophys Geosyst 17:1511–1539. doi:10.1002/2015GC006184

    Article  Google Scholar 

  • Parsons AJ, Phillips RJ, Lloyd GE, Law RD, Searle MP, Walshaw RD (2016c) Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: an atypical example of channel flow during the Himalayan orogeny. Geosphere 12:985–1015. doi:10.1130/GES01246.1

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, p 366. doi:10.1007/3-540-29359-0

    Google Scholar 

  • Pearson ON, DeCelles PG (2005) Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold-thrust belt of Nepal. Tectonics 24:TC4008. doi:10.1029/2003TC001617

    Article  Google Scholar 

  • Rennie SF, Fagereng A, Diener JFA (2013) Strain distribution within a km-scale, mid-crustal shear zone: the Kuckaus Mylonite Zone, Namibia. J Struct Geol 56:57–69. doi:10.1016/j.jsg.2013.09.001

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796. doi:10.1016/j.epsl.2005.05.034

    Article  Google Scholar 

  • Robinson DM, Martin AJ (2014) Reconstructing the Greater Indian margin: a balanced cross section in central Nepal focusing on the Lesser Himalayan duplex. Tectonics 33:2143–2168. doi:10.1002/2014TC003564

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Patchett PJ, Garzione CN (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet Sci Lett 192:507–521. doi:10.1016/S0012-821X(01)00451-4

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geol Soc Am Bull 118:865–885. doi:10.1130/B25911.1

    Article  Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Miner Petrol 165:349–372. doi:10.1007/s00410-012-0812-y

    Article  Google Scholar 

  • Sachan HK, Sharma R, Sahai A, Gururajan NS (2001) Fluid events and exhumation history of the main central thrust zone Garhwal Himalaya (India). J Asian Earth Sci 19:207–221. doi:10.1016/S1367-9120(00)00036-5

    Article  Google Scholar 

  • Schelling D, Arita K (1991) Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya. Tectonics 10:851–862. doi:10.1029/91TC01011

    Article  Google Scholar 

  • Schmid SM, Aebli HR, Heller F, Zingg A, (1989) The role of the Periadriatic Line in the tectonic evolution of the Alps. In: Coward MP, Dietrich D, Park RG (eds) Alpine Tectonics, vol 45. Geological Society, Special Publication, London, pp 153–171. doi:10.1144/GSL.SP.1989.045.01.08

  • Searle MP (2010) Low-angle normal faults in the compressional Himalayan orogen; Evidence from the Annapurna-Dhaulagiri Himalaya, Nepal. Geosphere 6:296–315. doi:10.1130/GES00549.1

    Article  Google Scholar 

  • Searle MP, Godin L (2003) The South Tibetan Detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol 111:505–523. doi:10.1086/376763

    Article  Google Scholar 

  • Searle MP, Waters DJ, Rex DC, Wilson RN (1992) Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar. J Geol Soc 149:753–773. doi:10.1144/gsjgs.149.5.0753

    Article  Google Scholar 

  • Searle MP, Law RD, Godin L, Larson KP, Streule MJ, Cottle JM, Jessup MJ (2008) Defining the Himalayan Main Central Thrust in Nepal. J Geol Soc 165:523–534. doi:10.1144/0016-76492007-081

    Article  Google Scholar 

  • Sinha-Roy S (1982) Himalayan Main Central Thrust and its implications for Himalayan inverted metamorphism. Tectonophysics 84:197–224. doi:10.1016/0040-1951(82)90160-3

    Article  Google Scholar 

  • Soucy La Roche R, Godin L, Cottle JM, Kellett DA (2016) Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya. Geology 44:403–406. doi:10.1130/G37754.1

    Article  Google Scholar 

  • Stephenson BJ, Waters DJ, Searle MP (2000) Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J Metamorph Geol 18:571–590. doi:10.1046/j.1525-1314.2000.00277.x

    Article  Google Scholar 

  • Stephenson BJ, Searle MP, Waters DJ, Rex DC (2001) Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar-Zanskar Himalaya. J Geol Soc 158:637–652. doi:10.1144/jgs.158.4.637

    Article  Google Scholar 

  • Stockhert B, Brix MR, Kleinschrodt R, Hurford AJ, Wirth R (1999) Thermochronometry and microstructures of quartz—a comparison with experimental flow laws and predictions on the temperature of the brittle–plastic transition. J Struct Geol 21:351–369. doi:10.1016/S0191-8141(98)00114-X

    Article  Google Scholar 

  • Streule MJ, Searle MP, Waters DJ, Horstwood MSA (2010) Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics 29:TC5011. doi:10.1029/2009TC002533

    Article  Google Scholar 

  • Sullivan WA, Boyd AS, Monz ME (2013) Strain localization in homogeneous granite near the brittle–ductile transition: a case study of the Kellyland fault zone, Maine, USA. J Struct Geol 56:70–88. doi:10.1016/j.jsg.2013.09.003

    Article  Google Scholar 

  • Tobgay T, McQuarrie N, Long S, Kohn MJ, Corrie SL (2012) The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya. Earth Planet Sci Lett 319–320:146–158. doi:10.1016/j.epsl.2011.12.005

    Article  Google Scholar 

  • Tornebohm AE (1888) Om fjallproblemet. Geologiska Foereningan i Stockholm Foerhandlingar 10:328–336. doi: 10.1080/11035898809444211

  • Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030. doi:10.1016/j.gr.2013.06.012

    Article  Google Scholar 

  • Valdiya KS (1980) Geology of Kumaun lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun, p 291

    Google Scholar 

  • van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W, Torsvik TH (2012) Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc Natl Acad Sci 109:7659–7664. doi:10.1073/pnas.1117262109

    Article  Google Scholar 

  • Vannay J-C, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V, Cosca M (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23:TC1014. doi:10.1029/2002TC001429

    Article  Google Scholar 

  • Webb AAG (2013) Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere 9:572–587. doi:10.1130/GES00787.1

    Article  Google Scholar 

  • Webb AAG, Yin A, Harrison TM, Celerier J, Burgess WP (2007) The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: implications for the evolution of the Himalayan orogen. Geology 35:955–958. doi:10.1130/G23931A.1

    Article  Google Scholar 

  • Webb AAG, Schmitt AK, He D, Weigand EL (2011a) Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya. Earth Planet Sci Lett 304:483–495. doi:10.1016/j.epsl.2011.02.024

    Article  Google Scholar 

  • Webb AAG, Yin A, Harrison TM, Celerier J, Gehrels GE, Manning CE, Grove M (2011b) Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere 7:1013–1061. doi:10.1130/GES00627.1

    Article  Google Scholar 

  • Webb AAG, Yin A, Dubey CS (2013) U-Pb zircon geochronology of major lithologic units in the eastern Himalaya: implications for the origin and assembly of Himalayan rocks. Geol Soc Am Bull 125:499–522. doi:10.1130/B30626.1

    Article  Google Scholar 

  • Whipple KX, Shirzaei M, Hodges KV, Arrowsmith JR (2016) Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake. Nat Geosci 9:711–716. doi:10.1038/ngeo2797

    Article  Google Scholar 

  • Whittington A, Foster G, Harris N, Vance D, Ayres M (1999) Lithostratigraphic correlations in the western Himalaya—an isotopic approach. Geology 27:585–588. doi:10.1130/0091-7613(1999)027<0585:LCITWH>2.3.CO;2

    Article  Google Scholar 

  • Yakymchuk C, Godin L (2012) Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: an example from far-northwest Nepal. J Metamorph Geol 30:513–535. doi:10.1111/j.1525-1314.2012.00979.x

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131. doi:10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

  • Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488:293–325. doi:10.1016/j.tecto.2009.06.002

    Article  Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Webb AAG, Harrison TM, Chou CY, Celerier J (2010) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geol Soc Am Bull 122:360–395. doi:10.1130/B26461.1

    Article  Google Scholar 

  • Yoshida M, Upreti BN (2006) Neoproterozoic India within East Gondwana: constraints from recent geochronologic data from Himalaya. Gondwana Res 10:349–356. doi:10.1016/j.gr.2006.04.011

    Article  Google Scholar 

Download references

Acknowledgements

Alexander Webb and Nadine McQuarrie generously provided vector format files of Figs. 1 and 2, respectively. Discussions with Steven Kidder and Kyle Larson clarified some of the ideas presented in this article. I thank Sumit Chakraborty, Soumyajit Mukherjee, and an anonymous reviewer for insightful comments and Soumyajit Mukherjee and Wolf-Christian Dullo for able editorial handling. Sumit Chakraborty pointed out con 1 in section Cons of the metamorphic-rheological definition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.J. A review of definitions of the Himalayan Main Central Thrust. Int J Earth Sci (Geol Rundsch) 106, 2131–2145 (2017). https://doi.org/10.1007/s00531-016-1419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1419-8

Keywords

Navigation