Skip to main content
Log in

Geochemistry of mylonitic gneisses from the Cycladic Basement Unit (Paros and Serifos, Aegean Sea): implications for protoliths of the high-grade gneisses

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The nature of the protolith(s) of high-grade gneisses from the Aegean Cycladic Basement Unit of the islands of Paros and Serifos is investigated using whole-rock geochemistry and Sr–Nd–O isotopes, in order to better understand their origin and to compare with possible equivalents from the southern Aegean region. On Paros, the basement unit consists of heterogeneous, mylonitized upper amphibolite-grade paragneisses and associated migmatitic rocks, whereas on Serifos, it consists of a mylonitized felsic gneiss, intercalated with layers and lenses of S-type leucogranites and minor mafic metavolcanics. New Nd, Sr and O isotope data suggest a predominantly crustal-derived source in the gneiss protolith from both islands: high initial 87Sr/86Sr ratios (≥7052 to 0.711, calculated at 300 Ma), negative initial εNd (−2.8 to −7.7) values for bulk-rock gneiss samples, and high δ18O values of quartz separates (+10 to +12.7 ‰). Major and trace-element variations corroborate that chemical differentiation within the NW Paros gneiss subunit results from progressive migmatitization. Peraluminous gneisses from eastern Paros share clear similarities with metapelitic gneisses from the Naxos gneiss dome, in terms of their trace-element patterns, εNd (300) and O isotope characteristics. The mineral assemblage, the fine grain size (due to intense mylonitization), and the metaluminous affinity of the South Serifos grey quartzofeldpathic gneiss do not allow for an unambiguous interpretation for these undated rocks; however, a combination of geochemical parameters and tectonic discrimination diagrams indicates an immature siliciclastic (greywacke) protolith from a continental island arc setting. Sr–Nd isotopic systematics indicates an increasing lower crustal component in gneisses from NW Paros, which is closer to the migmatitic core of the Paros dome. The overall isotopic trend of the gneissic Cycladic Basement Unit on Paros is spatially correlated with that of the Naxos gneiss dome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A late oligocene/early miocene high temperature belt in the attic-cycladic crystalline complex (SE Pelagonian, Greece). Geol Jahrb 23:97–164

    Google Scholar 

  • Anders B (2005) The pre-Alpine evolution of the basement Zone and the Vardar Zone, Greece. Unpublished Ph.D. thesis, Johannes-Gutenberg-Universität Mainz, Germany

  • Anders B, Reischmann T, Kostopoulos D (2007) Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. Int J Earth Sci 96:639–661

    Article  Google Scholar 

  • Andriessen PAM, Boelrijk NAIM, Hebeda EH, Priem ENA, Verdurmen EATh, Verschure RH (1979) Dating the events of metamorphism and granitic magmatism in the Alpine orogen of Naxos (Cyclades, Greece). Contrib Mineral Petrol 69:215–225

    Article  Google Scholar 

  • Andriessen PAM, Banga G, Hebeda EH (1987) Isotopic age study of pre-alpine rocks in the basal units on Naxos, Sikinos and Ios, Greek Cyclades. Geol Mijnbouw 66:3–14

    Google Scholar 

  • Ayres M, Harris N (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem Geol 139:249–269

    Article  Google Scholar 

  • Baker J, Matthews A (1995) The stable isotopic evolution of a metamorphic complex, Naxos, Greece. Contrib Mineral Petrol 120:391–403

    Article  Google Scholar 

  • Bargnesi EA, Stockli DF, Mancktelow N, Soukis K (2013) Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 595–596:165–182

    Article  Google Scholar 

  • Barker F (1979) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam

    Google Scholar 

  • Bea F (1996a) Controls on the trace element composition of crustal melts. Geol Soc Am Spec Pap 315:33–41

    Google Scholar 

  • Bea F (1996b) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical compositionof sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bickle MJ, Wickham SM, Chapman HJ, Taylor HP Jr (1988) A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France. Contrib Mineral Petrol 100:399–417

    Article  Google Scholar 

  • Bolhar R, Ring U, Allen CM (2010) An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 1: geochronology. Contrib Mineral Petrol 160:719–742. doi:10.1007/s00410-010-0504-4

    Article  Google Scholar 

  • Borthwick J, Harmon RS (1982) A note regarding ClF3 as alternative to Br F5 for oxygen isotope analysis. Geochim Cosmochim Acta 46:1665–1668

    Article  Google Scholar 

  • Brichau S, Thomson S, Ring W (2010) Thermochronometric constraints on the tectonic evolution of the Serifos detachment, Aegean Sea. Int J Earth Sci 99:379–393. doi:10.1007/s00531-008-0386-0

    Article  Google Scholar 

  • Bröcker M, Franz L (1998) Rb–Sr isotope studies on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprinting and deformational activity. Geol Mag 135:369–382

    Article  Google Scholar 

  • Bröcker M, Keasling A (2006) Ion probe U–Pb zircon ages from the high-pressure/low-temperature melange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. J Metamorph Geol 24:615–631

    Article  Google Scholar 

  • Bröcker M, Pidgeon RT (2007) Protolith ages of meta-igneous and metatuffaceous rocks from the Cycladic Blueschist Unit, Greece: results of a reconnaissance U–Pb zircon study. J Geol 115:83–98

    Article  Google Scholar 

  • Bröcker M, Huyskens M, Berndt J (2016) U–Pb dating of detrital zircons from Andros, Greece: constraints for the time of sediment accumulation in the northern part of the cycladic blueschist belt. Geol J 51:354–367

    Article  Google Scholar 

  • Buick IS (1991) The late Alpine evolution of an extensional shear zone, Naxos, Greece. J Geol Soc Lond 148:93–103

    Article  Google Scholar 

  • Buick IS, Holland TJB (1989) The P-T-t path associated with crustal extension, Naxos, Cyclades, Greece. Geological Society, London, Special Publications 43:365–369

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan fold belt. Trans R Soc Edinb Earth Sci 83:1–26

    Article  Google Scholar 

  • Chatzaras V, Dörr W, Finger F, Xypolias P, Zulauf G (2013) U–Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evia Island): implications for the Triassic tectonic setting of Greece. Tectonophysics 595–596:125–139

    Article  Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Article  Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth 73:135–149

    Article  Google Scholar 

  • Downes H, Duthou JL (1988) Isotopic and trace element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308

    Article  Google Scholar 

  • Dürr S, Altherr R, Keller J, Okrusch M, Seidel E (1978) The median Aegean crystalline belt: stratigraphy, structure, metamorphism, magmatism. In: Closs H et al (eds) Alps, apennines, hellinides, inter-union commission on geodynamics scientific report 38, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 455–477

    Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2. Contrib Mineral Petrol 106:286–295

    Article  Google Scholar 

  • Engel M, Reischmann T (1998) Single zircon geochronology of orthogneisses from Paros, Greece. Bull Geol Soc Greece 32:91–99

    Google Scholar 

  • Faure G (1986) Principles of Isotope Geology. Wiley, New York, p 589

    Google Scholar 

  • Franz L, Okrusch M, Bröcker M (1993) Polymetamorphic evolution of pre-Alpidic basement rocks on the island of Sikinos (Cyclades, Greece). Neues Jahrb Mineral Monatshefte 4:145–162

    Google Scholar 

  • Fu B, Bröcker M, Ireland T (2015) Zircon U–Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece. Int J Earth Sci 104:75–87. doi:10.1007/s00531-014-1064-z

    Article  Google Scholar 

  • Fullagar PD (1992) Geochronological studies of fault-related rocks. In: Bartholomew MJ, Hyndman DH, Mogk DW, Mason R (eds) Basement Tectonics, 8, Characterization and Comparison of Ancient and Mesozoic Continental Margins, Proceedings of the Eighth International Conference on Basement Tectonics, Montana, USA, 1988, pp 37–50

  • Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66:100–106

    Google Scholar 

  • Gautier P, Brun JP (1994) Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Ewia Island). Tectonophysics 238:399–424

    Article  Google Scholar 

  • Gautier P, Brun JP, Jolivet L (1993) Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12:1180–1194

    Article  Google Scholar 

  • Grasemann B, Petrakakis K (2007) Evolution of the Serifos metamorphic core complex. In: Lister G, Forster M, Ring U (eds) Inside the Aegean metamorphic core complexes. J Virtual Explor, 28, Paper 2

  • Grasemann B, Schneider DA, Stockli DF, Iglseder C (2011) Miocene bivergent crustal extension in the Aegean: evidence from the western Cyclades (Greece). Lithosphere 4:23–39

    Article  Google Scholar 

  • Henjes-Kunst F, Kreuzer H (1982) Isotopic dating of pre-alpidic rocks from the island of Ios (Cyclades, Greece). Contrib Mineral Petrol 80:245–253

    Article  Google Scholar 

  • Hinchey AM, Carr SD (2007) Protolith composition of cordierite–gedrite basement rocks and garnet amphibolites of the Bearpaw Lake area of the Thor–Odin Dome, Monash Complex, British Columbia, Canada. Can Mineral 45:607–629

    Article  Google Scholar 

  • Hinsken T, Bröcket M, Berndt J, Gärtner C (2015) Maximum sedimentation ages and provenance of metasedimentary rocks from Tinos Island, Cycladic blueschist belt, Greece. Int J Earth Sci. doi:10.1007/s00531-015-1258-z

    Google Scholar 

  • Iglseder C, Grasemann B, Schneider DA, Petrakakis K, Miller C, Klötzli US, Thöni M, Zámolyi A, Rambousek C (2009) I and S-type plutonism on Serifos (W-Cyclades, Greece). Tectonophysics 473:69–83

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47(6):1255–1259

    Article  Google Scholar 

  • Jenner GA (1996) Trace-element geochemistry of igneous rocks; geochemical nomenclature and analytical geochemistry. In: Wyman DA (ed) Trace-element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12:51–77

  • Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99:109–138

    Article  Google Scholar 

  • Jolivet L, Faccenna C, Goffé B, Burov E, Agard P (2003) Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am J Sci 303:353–409

    Article  Google Scholar 

  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Grasemann B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of the slab tear below the Aegean. Tectonophysics 659:166–182

    Article  Google Scholar 

  • Katzir Y, Garfunkel Z, Avigad D, Matthews A (2007) The geodynamic evolution of the Alpine orogen in the Cyclades (Aegean Sea, Greece): insights from diverse origins and modes of emplacement of ultramafic rocks. Geol Soc Lond Spec Publ 291:17–40

    Article  Google Scholar 

  • Keay S, Lister G (2002) African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece. Geology 30:235–238

    Article  Google Scholar 

  • Keay S, Lister G, Buick I (2001) The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342:275–312

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelite in the early stages of crustal anatexis. Contrib Mineral Petr 99:226–237

    Article  Google Scholar 

  • Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12:221–225

    Article  Google Scholar 

  • Löwen K, Bröcker M, Berndt J (2015) Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study. Int J Earth Sci 104:205–220

    Article  Google Scholar 

  • Macera P, Di Pisa A, Gasperini D (2011) Geochemical and Sr-Nd isotope disequilibria during multi-stage anatexis in a metasedimentary Hercynian crust. Eur J Mineral 23:207–222

    Article  Google Scholar 

  • Marsh NG, Tarney J, Hendry GL (1983) Trace element geochemistry of basalts from hole 504B, Panama Basin, DSDP Legs 69 and 70. Initial Rep Deep Sea 69:747–763

    Google Scholar 

  • Martin L, Duchêne S, Deloule E, Vanderhaeghe O (2006) The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos, Greece. Lithos 87:174–192

    Article  Google Scholar 

  • McGrath A (1999) Structural and geochemical evolution of an extensional metamorphic core complex, Paros, Greece. Unpubl Ph.D. thesis. University of Leicester, UK

  • Meinhold G, Kostopoulos D, Reischmann T (2007) Geochemical constraints on the provenance and depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea, Greece: implications for the evolution of Palaeotethys. J Geol Soc Lond 164:1145–1163

    Article  Google Scholar 

  • Moreno-Ventas I, Rogers G, Castro A (1995) The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: inferences from Sr–Nd isotopes. Contrib Mineral Petrol 120:137–149

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkaline earth during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Okrusch M, Bröcker M (1990) Eclogite facies rocks in the Cycladic Blueschist Belt, Greece: a review. Eur J Mineral 2:451–478

    Article  Google Scholar 

  • Papanikolaou DJ (1977) On the structural geology and tectonics of Paros Island (Aegean Sea). Ann Geol de Pays Hell 28:450–464

    Google Scholar 

  • Papanikolaou DJ (1980) Contribution to the geology of the Aegean Sea: the island of Paros. Ann Geol de Pays Hell 30:65–96

    Google Scholar 

  • Papanikolaou D (1987) Tectonic evolution of the Cycladic blueschist belt (Aegean Sea, Greece). Chem Transp Metasomatic Process. Springer, Netherlands, pp 429–450

    Chapter  Google Scholar 

  • Papanikolaou D (1989) Are the medial crystalline massifs of the Eastern Mediterranean drifted Gondwanan fragments? Geol Soc Greece Spec Publ 1:63–90

    Google Scholar 

  • Papanikolaou DJ, Demirtasli E (1987) Geological correlations between the Alpine segments of the Hellenides–Balkanides and Taurides–Pontides. In: Flugel HW et al (eds) Pre-variscan and Variscan events in the Alpine-Mediterranean mountain belts. Allfa Publishers, Bratislava, pp 387–396

    Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anataxis. J Petrol 39:689–710

    Article  Google Scholar 

  • Pe-Piper G (1998) The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geol Mag 135:331–348

    Article  Google Scholar 

  • Pe-Piper G (2000) Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. Eur J Mineral 12:859–875

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece: the anatomy of an orogen. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Pe-Piper G, Kotopouli CN, Piper DJW (1997) Granitoid rocks of Naxos, Greece: regional geology and petrology. Geol Mag 32:153–171

    Google Scholar 

  • Petrakakis K, Iglseder C, Zámolyi A, Rambousek C, Grasemann B, Draganits E, Kurka A, Photiades A (2010) Geological map of Greece, Serifos Island. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Peytcheva I, von Quadt A, Ovtcharova M (2004) Metagranitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U–Pb, Rb–Sr, and Ar–Ar timing of emplacement and exhumation and isotope-geochemical features. Contrib Mineral Petrol 82:1–31

    Article  Google Scholar 

  • Photiades A, Keay A (2003) Geological and geochronological data for Sikinos and Folegandros metamorphic units (Cyclades, Greece): their tectono-stratigraphic significance. Bull Geol Soc Greece 35:35–45

    Google Scholar 

  • Rabillard A, Arbaret L, Jolivet L, Le Breton N, Gumiaux C, Augier R, Grasemann B (2015) Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece). Tectonics 34:1080–1106. doi:10.1002/2014TC003650

    Article  Google Scholar 

  • Reischmann T (1998) Pre-alpine origin of tectonic units from the metamorphic core complex of Naxos, Greece, identified by single zircon Pb/Pb dating. Bull Geol Soc Greece 32:101–111

    Google Scholar 

  • Robertson AHF (2012) Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int Geol Rev 54:373–454

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–65

  • Saunders AD, Tarney J, Marsh NG, Wood DA (1980) Ophiolites as ocean crust or marginal basin crust: a geochemical approach. In: Panayiotou A (ed) Ophiolites. Proceedings of the international ophiolite symposium, cyprus 1979, pp 193–204

  • Sawyer EW (1986) The influence of rock type, chemistry, chemical weathering and sorting on the geochemistry of clastic sediments from Quetico Metasedimentary Belt, Superior Province, Canada. Chem Geol 55:77–95

    Article  Google Scholar 

  • Schneider DA, Senkowski C, Vogel H, Grasemann B, Iglseder C, Schmitt AK (2011) Eocene tectonometamorphism on Serifos (western Cyclades) deduced from zircon depth-profiling geochronology and mica thermochronology. Lithos 125:151–172

    Article  Google Scholar 

  • Shand SJ (1927) Eruptive rocks. Murby, London

    Google Scholar 

  • Shaw DM (1956) Geochemistry of pelitic rocks. Part II: major elements and general geochemistry. Geol Soc Am Bull 67:919–934

    Article  Google Scholar 

  • Sheppard SMF (1977) The Cornubian batholiths, southwest England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc Lond 133:573–591

    Article  Google Scholar 

  • Stouraiti C, Mitropoulos P, Tarney J, Barreiro B, McGrath AM, Baltatzis E (2010) Geochemistry and petrogenesis of late Miocene granitoids, Cyclades, southern Aegean: nature of source components. Lithos 114:337–352

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications 42:313–345

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tomaschek F, Keiter M, Kennedy AK, Ballhaus C (2008) Pre-alpine basement within the Northern Cycladic Blueschist unit on Syros Island, Greece. Z dtsch Ges Geowiss 159:521–532

    Google Scholar 

  • Tschegg C, Grasemann B (2009) Deformation and alteration of a granodiorite during low-angle normal faulting (Serifos, Greece). Lithosphere 1:139–154

    Article  Google Scholar 

  • Van der Maar PA, Jansen JBH (1983) The geology of the polymetamorphic complex of Ios, Cyclades, Greece, and its significance for the Cycladic Massif. Geol Rundsch 72:283–299

    Article  Google Scholar 

  • Van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel R (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33:325–328

    Article  Google Scholar 

  • Vavassis I, De Bono A, Stampfli GM, Giorgis D, Valloton A, Amelin Y (2000) U–Pb and Ar–Ar geochronological data from the Pelagonian basement in Evia (Greece): geodynamic implication for the evolution of Paleotethys. Schweiz Miner Petrogr 80:21–43

    Google Scholar 

  • Villaros A, Stevens G, Moyen JF, Buick IS (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Mineral Petrol 158:543–561

    Article  Google Scholar 

  • Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43:55–79

    Article  Google Scholar 

  • Villaseca C, Orejana D, Paterson BA, Billstrom K, Pérez-Soba C (2007) Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. Eur J Mineral 19:463–477

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • Wickham SM (1990) Isotopic modification of the continental crust: implications for the use of isotope tracers in granite petrogenesis. In: Asworth JR, Brown M (eds) High-temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London, pp 124–148

    Chapter  Google Scholar 

  • Wijbrans JR, McDougall I (1988) Metamorphic evolution of the Attic Cycladic metamorphic belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6:571–594. doi:10.1111/j.1525-1314.1988.tb00441.x

    Article  Google Scholar 

  • Xypolias P, Dörr W, Zulauf G (2006) Late carboniferous plutonism within the pre-Alpine basement of the external hellenides (Kithira, Greece): evidence from U–Pb zircon dating. J Geol Soc Lond 163:539–547

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank professor John Tarney (University of Leicester) for his assistance, guidance, and support of this study. Field and analytical work were supported by the State Scholarship Foundation of Greece, ΙΔΡΥΜΑ ΚΡΑΤΙΚΩΝ ΥΠΟΤΡΟΦΙΩΝ (IKY), and the isotope analyses by the Natural Environment Research Council (NERC; UK). The valuable assistance of Nick Marsh at the University of Leicester (XRF analysis) is greatly appreciated. The authors thank professors Hilary Downes and Michael Bröcker for their constructive comments that helped improve this manuscript. We also appreciate the very helpful suggestions and comments by the Editor-in-Chief professor Wolf-Christian Dullo and the topic-Editor professor Ingo Braun for editorial handling. Furthermore, we thank Dr. Kostantinos Soukis for useful comments and Dr. Danae Antivachis for helping with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Stouraiti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2016_1414_MOESM1_ESM.docx

Supplementary Table. Compilation of zircon ages from rocks of the Cycladic Basement Unit and metasedimentary rocks in the Cycladic Blueschist Unit (CBU), locating in the broader Aegean region. (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, A., Stouraiti, C. & Windley, B. Geochemistry of mylonitic gneisses from the Cycladic Basement Unit (Paros and Serifos, Aegean Sea): implications for protoliths of the high-grade gneisses. Int J Earth Sci (Geol Rundsch) 106, 2067–2089 (2017). https://doi.org/10.1007/s00531-016-1414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1414-0

Keywords

Navigation