Skip to main content

Advertisement

Log in

Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The transition zone between Eastern Alps and Pannonian Basin is a key area for the investigation of the interplay between regional uplift, local tectonic subsidence and depositional environment. Our study area, the western margin of the Little Hungarian Plain, is characterized by gentle hills, plateaus and depressions, of which several are filled by lakes—including one of Austria’s largest and shallowest lakes, Lake Neusiedl. Geological investigation is hampered by the scarcity of outcrops, and thus direct observation of sedimentological or structural features is difficult. Despite a long research history in the area, a consistent landscape evolution model considering all relevant constraints is lacking so far. In this study, we apply multidisciplinary methods to decipher the complex tectonic and fluvial depositional evolution of the region. Local data from shallow-lake drilling and seismic investigation are combined with regional data from industrial seismics and core data to gain new insights into the latest Pannonian (Late Miocene) and Quaternary evolution. Shallow-lake seismic data show the erosionally truncated Pannonian sediments dipping and thickening toward southeast, toward the modern depocenter of the Little Hungarian Plain. Overlying Quaternary fluvial sediments show a very similar thickening trend except for the area on the plateau north of the lake indicating ongoing subsidence in major parts of the basin. Drill cores from locations along the lake seismic lines were analyzed concerning their age, mineralogy and heavy minerals and compared with outcrop samples from the surrounding plains and the plateau to derive indications on sediment provenance. A key observation is the apparent lack of a significant gravel layer on top of the tilted Pannonian sediments beneath Lake Neusiedl. Small-scale faults can be observed in the lake seismic sections along with key sedimentary features. Significant differences of the current elevation of the top Pannonian between the surrounding plains and the plateau indicate post-Pannonian normal faulting, which is a key process in shaping the present-day morphology of the region. Luminescence ages of samples from the Quaternary fluvial gravels on top of the Pannonian sediments are a significantly higher (>300 ka) compared to the gravels in the plain (102 ± 11 and 76 ± 8 ka), suggesting ongoing tectonic subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alsop GI, Shmuel M (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. J Struc Geol 33:433–457

    Article  Google Scholar 

  • Bácsatyai L, Csaplovics E, Márkus I, Sindhuber A (1997) Digitale Geländemodelle des Neusiedler See-Beckens. Wissenschaftliche Arbeiten aus dem Burgenland. Burgenländisches Landesmuseum, Eisenstadt

  • Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58:165–180

    Article  Google Scholar 

  • Beidinger A, Decker K (2011) 3D geometry and kinematics of the Lassee flower structure: implications for segmentation and seismotectonics of the Vienna Basin strike-slip fault, Austria. Tectonophysics 499:22–40

    Article  Google Scholar 

  • Beidinger A, Decker K, Roch KH (2011) The Lassee segment of the Vienna Basin fault system as a potential source of the earthquake of Carnuntum in the fourth century A.D. Int J Earth Sci 100:1315–1329

    Article  Google Scholar 

  • Bernhauser A (1962) Zur Verlandungsgeschichte des burgenländischen Seewinkels. Wissenschaftliche Arbeiten aus dem Burgenland 29:143–171

    Google Scholar 

  • Blair MW, Yukihara EG, McKeever SWS (2005) Experiences with single-aliquot procedures using coarse-grain feldspars. Radiat Meas 39:361–374

    Article  Google Scholar 

  • Blohm M (1974) Sedimentpetrographische Untersuchungen am Lake Neusiedl/Österreich. Ph.D. Thesis, Ruprecht-Karl Universität, Heidelberg, p 85

  • Clark PU, Archer D, Pollard D, Blum JD, Rial JA, Brovkin V, Mix AC, Pisias NG, Roy M (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat Sci Rev 25:3150–3184

    Article  Google Scholar 

  • Csapó L (1998) A kisalföldi és Gerecse-peremi Duna-teraszok nehézásvány vizsgálata. Heavy mineral analyses of the Danube-terraces of the Gerecse-margin and the Little Hungarian Plain, Hungary. Földtani Közlöny 128:499–518

    Google Scholar 

  • Decker K, Peresson H (1996) Tertiary kinematics in the Alpine Carpathian-Pannonian system. Links between thrusting, transform faulting and crustal extension. Oil and gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publication, London, pp 69–77

    Google Scholar 

  • Decker K, Peresson H, Hinsch R (2005) Active tectonics and Quaternary basin formation along the Vienna Basin transform fault. Quat Sci Rev 24:307–322

    Article  Google Scholar 

  • Don G (1991) Thickness of the Quaternary deposits 1:100 000, MOSONMAGYARÓVÁR. In: Scharek P (ed) The Geologic Map Series of the Little Hungarian Plain. Hungarian Geologic Survey, Budapest

    Google Scholar 

  • Don G (1993) Thickness of the Quaternary deposits 1:100 000, KAPUVÁR. In: Scharek P (ed) The Geologic Map Series of the Little Hungarian Plain. Hungarian Geologic Survey, Budapest

    Google Scholar 

  • Draganits E (1996) Kristallingeologische Neubearbeitung des südlichen Ödenburger Gebirges, Burgenland (Österreich). Diploma Thesis, University of Vienna, p 151 (http://othes.univie.ac.at/157/1/Draganits_1996_Diplomarbeit.pdf)

  • Draganits E (1998) Seriengliederung im Kristallin des südlichen Ödenburger Gebirges (Burgenland) und deren Stellung zum Unterostalpin am Alpenostrand. Jb Geol BA 141:113–146

    Google Scholar 

  • Draganits E, Zámolyi A, Hodits B, Gier S, Grasemann B, Janda C, Schiel B, Rohatsch A, Popp F (2006) Neusiedlersee/Fertő Tó area (Austria/Hungary): landscape change through time constrained by geomorphology, lithostratigraphic sections, archaeology and historical maps. Geophysical Research Abstracts, 8–09995

  • Draganits E, Zámolyi A, Gier S, Hodits B, Exner U, Janda C, Grasemann B (2007) Neusiedlersee/Fertő Tó area (Austria/Hungary): Minimum estimates of former lake levels. Geophysical Research Abstracts 9–10052

  • Erkmen C (2012) Kinematik und Deformation an der Leithagebirgs-W-Randstörung (Wimpassing). Unpubl. Dipl. Thesis, University of Vienna, p 82 (http://othes.univie.ac.at/18082/1/2012-02-01_0326385.pdf)

  • Fábián SÁ, Kovács J, Varga G, Gy Sipos, Horváth Z, Thamó-Bozsó E, Tóth G (2014) Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43(3):722–732

    Article  Google Scholar 

  • Fahrion H (1944) Bericht über die Ergebnisse der Counterflush-Bohrungen Lake Neusiedl (CFN 1–37). Unpubl, Report, Bohrarchiv, Geologische Bundesanstalt, Wien

    Google Scholar 

  • Fodor L (1991) Evolution Tectonique et Paleo-champs de Contraintes Oligocenes a Quaternaires de la Zone de Transition Alpes Orientales-Carpathes Occidentales: Formation et Development des Bassins de Vienne et Nord-Pannoniens. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, p 215

  • Fodor L (2006) Tertiary tectonic evolution of the Pannonian-Carpathian-Eastern Alpine domain: a personal view of from Pannonia in the Light of the terminological question of tectonic units. Geolines 20:34–36

    Google Scholar 

  • Fodor L, Bada G, Csillag G, Horváth E, Zs Ruszkiczay-Rüdiger, Palotás K, Síkhegyi F, Timár G, Cloetingh S, Horváth F (2005) An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin. Tectonophysics 410:15–41

    Article  Google Scholar 

  • Frasl E (1955) Schwermineraluntersuchungen an quartären Deckschichten des Marchfeldes. Verh Geol BA, Sonderheft D, pp 116–123

    Google Scholar 

  • Fuchs W (1965) Geologie des Ruster Berglandes (Burgenland). Jb Geol BA 108:155–194

    Google Scholar 

  • Fuchs W (1974) Bericht über Exkursionen in die Oststeiermark, in das südliche Burgenland und nach Westungarn zur Klärung der Herkunft der Seewinkelschotter. Verh Geol BA, Heft 4:118–121

    Google Scholar 

  • Fuchs R, Schreiber OS (1985) Das Pannonien im östlichen Burgenland (Seewinkel). In: Papp A (ed) M6 Pannonien (Slavonien und Serbien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys 7. Akadémiai Kiadó, Budapest, pp 68–72

    Google Scholar 

  • Fuchs W, Herrmann P, Grill R (1985) 79 Neusiedl am See—80 Ungarisch Altenburg—109 Pamhagen. Geologische Karte der Republik Österreich 1:50 000. Geologische Bundesanstalt, Wien

  • Gábris G, Nádor A (2007) Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the quaternary: a review and new synthesis. Quat Sci Rev 26:2758–2782

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz K, Ogg G (2012) The Geologic Time Scale 2012. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  • Gräfe B (2009) Luftgekoppeltes Ultraschallecho-Verfahren für Betonbauteile. Ph.D. Thesis, BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, p 138

  • Grenerczy G, Fejes I, Kenyeres A (2002) Present crustal deformation pattern in the Pancardi Region: constraints from Space Geodesy. EGU Stephan Mueller Spec Publ Ser 3:65–77

  • Halouzka R, Minaříková D (1977) Stratigraphic correlation of Pleistocene deposits of the river Danube in the Vienna and Komárno Basins. Antropozoic J Geol Sci 11:7–55

    Google Scholar 

  • Harzhauser M, Piller WE (2004) Integrated stratigraphy of the sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1(1):65–86

    Google Scholar 

  • Harzhauser M, Tempfer PM (2004) Late Pannonian wetland ecology of the Vienna Basin based on molluscs and lower vertebrate assemblages (Late Miocene, MN 9, Austria). Courier Forschungsinstitut Senckenberg 246:55–68

    Google Scholar 

  • Häusler H (2007) Geologische Karte der Republik Österreich 1:50 000. Erläuterungen zu den Blättern 79 Neusiedl am See, 80 Ungarisch-Altenburg und 109 Pamhagen. Geologische Bundesanstalt, Wien

  • Häusler H (ed) (2010) Geologische Karte der Republik Österreich 1:50 000. Erläuterungen zur Geologischen Karte 78 Rust. Geologische Bundesanstalt, Wien

  • Häusler H, Scheibz J, Chwatal W, Kohlbeck F (2014) Coeval Lower Miocene subsidence of the Eisenstadt Basin and relative updoming of its Austroalpine frame: implications from high-resolution geophysics at the Oslip section (Northern Burgenland, Austria). Int J Earth Sci 104:475–493. doi:10.1007/s00531-014-1084-8

    Article  Google Scholar 

  • Herrmann P (2000) Das Quartär. In: Schönlaub HP (ed) Burgenland. Erläuterungen zur Geologischen Karte des Burgenlandes 1:200.000. Geologie der Österreichischen Bundesländer, Geologische Bundesanstalt, Wien, pp 12–14

  • Hinsch R, Decker K, Wagreich M (2005) 3-D mapping of segmented active faults in the southern Vienna Basin. Quat Sci Rev 24:321–336

    Article  Google Scholar 

  • Hodits B (2006) Interpretation hochfrequenter Seeseismik und 3-D Strukturmodellierung im Neusiedlersee (Österreich). Dipl. Thesis. University of Vienna, p 69

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar Pet Geol 12:837–844

    Article  Google Scholar 

  • Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 226:287–300

    Article  Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation oft he Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Mem Geol Soc London, 32:191—206

  • Huber-Bachmann E, Schönauer A, Schöberl C (eds) (2012) Österreich, Zahlen, Daten, Fakten. Statistik Austria, Vienna

    Google Scholar 

  • Hubert JF (1962) A Zircon- tourmaline-rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sediments. J Sediment Petrol 32:440–450

    Google Scholar 

  • Husz G (1965) Zur Kenntnis der quartären Sedimente des Seewinkelgebietes (Burgenland—Österreich). Wissenschaftliche Arbeiten aus dem Burgenland 32:147–205

    Google Scholar 

  • Jarosinski M, Beekman F, Matenco L, Cloetingh S (2011) Mechanics of basin inversion: finite element modelling of the Pannonian Basin System. Tectonophysics 502:121–145

    Article  Google Scholar 

  • Joó I (1992) Recent vertical surface movements in the Carpathian Basin. Tectonophysics 202(2–4):129–134

    Article  Google Scholar 

  • Kilényi É, Šefara J (eds) (1989) Pre-Tertiary basement contour map of the Carpathian basin beneath Austria, Czechoslovakia and Hungary 1: 500 000. ELGI, Budapest

    Google Scholar 

  • Király G, Márkus I (2011) Remote sensing of the Hungarian Reed Belt of Lake Fertő/Neusiedl. In: Csaplovics E, Schmidt J (eds) International symposium on advanced methods of monitoring reed habitats in Europe. Rhombos-Verlag, Berlin, p 156

    Google Scholar 

  • Kisházi P, Ivancsics J (1977) Rekonstruktion der geologisch-lagerstättenkundlichen Verhältnisse des Braunkohlenbeckens von Brennberg. Mitteilungen des Ungarischen Forschungsinstituts für Bergbau 20:103–108

    Google Scholar 

  • Kováč M, Baráth I, Fordinál K, Grigorovich AS, Halásová E, Hudáčková N, Joniak P, Sabol M, Slamková M, Sliva L, Vojtko R (2006) Upper Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine-Carpathian-Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Palaeogeogr Palaeoclimatol Palaeoecol 238:32–52

    Article  Google Scholar 

  • Kováč M, Synak R, Fordinál K, Joniak P, Tóth C, Vojtko R, Nagy A, Baráth I, Maglay J, Minár J (2011) Late Miocene and Pliocene history of the Danube Basin: inferred from development of depositional systems and timing of sedimentary facies changes. Geol Carpath 62(6):519–534

    Google Scholar 

  • Küpper H (ed) (1957) Erläuterungen zur geologischen Karte Mattersburg-Deutschkreutz. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Lenhardt WA (2000) Rezente Krustendynamik. In: Schönlaub HP (ed) Burgenland. Erläuterungen zur Geologischen Karte des Burgenlandes 1:200.000. Geologie der Österreichischen Bundesländer, Geologische Bundesanstalt, Wien, pp 67–68

  • Lenhardt WA, Švancara J, Melichar P, Pazdírková J, Havíř J, Sýkorová Z (2007) Seismic activity of the Alpine–Carpathian–Bohemian Massif region with regard to geological and potential field data. Geol Carpath 58(4):397–412

    Google Scholar 

  • Linzer HG, Decker K, Peresson H, Dell’Mour R, Frisch W (2002) Balancing lateral orogenic float of the Eastern Alps. Tectonophysics 354:211–237

  • Lipiarski P, Reitner H, Shadlau S, Letouze-Zezula G (2001) Rohstoffgeologische Detailerkundung Parndorfer Platte. Bund/Bundesländer-Rohstoffprojekt BA-011. Unpubl. Report, Geologische Bundesanstalt, Wien, p 23

  • Lovász G (2007) Impact of recent neotectonic movements upon the channel gradient of the Danube. Földrajzi Értesítő 56(1–2):69–75

    Google Scholar 

  • Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Upper Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167

    Article  Google Scholar 

  • Magyar I, Radivojević D, Sztanó O, Synak R, Ujszászi K, Pócsik M (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global Planet Change 103:168–173

    Article  Google Scholar 

  • Mange MA, Maurer HFW (1992) Heavy minerals in colour. Chapman and Hall, London

    Book  Google Scholar 

  • Mattick RE, Teleki PG, Phillips RL, Clayton JL, Gy Dávid, Gy Pogácsás, Bardócz B, Simon E (1996) Structure, stratigraphy, and petroleum geology of the Little Plain Basin, Northwestern Hungary. AAPG Bull 80(11):1780–1800

    Google Scholar 

  • Minár J, Bielik M, Kováč M, Plašienka D, Barka I, Stankiovansky M, Zeyen H (2011) New morphostructural subdivision of the Western Carpathians: an approach integrating geodynamics into targeted morphometric analysis. Tectonophysics 502:158–174

    Article  Google Scholar 

  • Nebert K, Geutebrück E, Traussnigg H (1980) Zur Geologie der neogenen Lignitvorkommen entlang des Nordostsporns der Zentralalpen (Mittelburgenland). Jb Geol BA 123(1):39–112

    Google Scholar 

  • OMV (1970) Seismische profile seewinkel. OMV, Wien (Unpublished Report)

  • Papp G, Kalmár J (1995) Investigation of sediment compaction in the Pannonian basin using 3D gravity modelling. Phys Earth Planet Inter 88:89–100

  • Petr L, Žáčková P, Grygar TM, Píšková A, Křížek M, Treml V (2013) Šúr, a former late-glacial and Holocene lake at the westernmost margin oft he Carpathians. Preslia 85:239–263

    Google Scholar 

  • Pišút P (2002) Channel evolution of the pre-channelized Danube River in Bratislava, Slovakia (1712–1886). Earth Surf Process Landf 27:369–390

  • Pistotnik J, Herrmann P, Pascher GA (1993) 78 Rust. Geologische Karte der Republik Österreich 1:50 000. Geologische Bundesanstalt, Wien

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extrusion in compressional orogenic belts: the eastern Alps. Geology 17:404–407

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Linzer HG, Merle O (1991) Lateral extrusion in the Eastern Alps, 2, Structural analysis. Tectonics 10:257–271

    Article  Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for mediterranean and paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310

    Google Scholar 

  • Ruszkiczay-Rüdiger Z, Fodor L, Bada G, Leél-Össy Sz, Horváth E, Dunai TJ (2005a) Quantification of Quaternary vertical movements in the central Pannonian Basin: a review of chronologic data along the Danube River, Hungary. Tectonophysics 410:157–172

    Article  Google Scholar 

  • Ruszkiczay-Rüdiger Z, Dunai TJ, Bada G, Fodor L, Horváth E (2005b) Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend, (Pannonian Basin) using in situ produced 3He. Tectonophysics 410:173–187

    Article  Google Scholar 

  • Ruszkiczay-Rüdiger Z, Braucher R, Novothny Á, Csillag G, Fodor L, Molnár G, Madarász B, Team ASTER (2016) Tectonic and climatic control on terrace formation: coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe. Quat Sci Rev 131:127–147

    Article  Google Scholar 

  • Sachsenhofer RF, Lankreijer A, Cloetingh S, Ebner F (1997) Subsidence analysis and quantitative basin modelling in the Styrian Basin (Pannonian Basin System, Austria). Tectonophysics 272:175–196

  • Salcher B (2008) Sedimentology and modelling of the Mitterndorf Basin. Ph.D. Thesis, University of Vienna, Vienna, p 105

  • Salcher B, Wagreich M (2010) Climate and tectonic controls on Pleistocene sequence development and river evolution in the Southern Vienna Basin (Austria). Quat Int 222(1–2):154–167

    Article  Google Scholar 

  • Scharek P, Molnár P, Pristás J, Schäffer G (2000a) Neotectonic map (Danube Region Environmental Geology Programme DANREG—explanatory notes). Jb Geol BA 142:483–492

    Google Scholar 

  • Scharek P, Molnár P, Pristás J, Schäffer G (2000b) Map of genetic types and thickness of quaternary sediments (Danube Region Environmental Geology Programme DANREG—Explanatory notes). Jb Geol BA 142:483–492

    Google Scholar 

  • Scheibz J (2010) Geologisch-geophysikalische Untersuchung postmiozäner Strukturen zwischen Leithagebirge and Ruster Höhenzug (Burgenland). Ph.D. Thesis, University of Vienna, p 173

  • Schmidt J, Csaplovics E (2011) Mapping the Austrian reed bed of Lake Neusiedl by means of airborne optical scanner imagery. In: Csaplovics E, Schmidt J (eds) International symposium on advanced methods of monitoring reed habitats in Europe. Rhombos-Verlag, Berlin, p 156

    Google Scholar 

  • Schoklitsch K (1962) Untersuchungen an Schwermineralspektren und Kornverteilungen von quartären und jungtertiären Sedimenten des Oberpullendorfer Beckens (Landseer Bucht) im mittleren Burgenland. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abteilung I, 171(3–5):79–141

  • Schönlaub HP (2000) Geologische Karte des Burgenlandes 1:200 000. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Schuster K, Berka R, Draganits E, Frank W, Schuster R (2001) Lithologien, Metamorphosegeschichte und tektonischer Bau der kristallinen Einheiten am Alpenostrand. In: Mandl GW (ed.) Arbeitstagung 2001 Neuberg an der Mürz 3.-7. September 2001: Geologische Karten 1:50.000 Blatt 103 Kindberg und Blatt 104 Mürzzuschlag. Geologische Bundesanstalt, Wien, 29–56

  • Sebe K, Roetzel R, Fiebig M, Lüthgens C (2015) Pleistocene wind systems in eastern Austria and its impact on landscape evolution. Catena 134:59–74

    Article  Google Scholar 

  • Spahic D, Exner U, Behm M, Grasemann B, Haring A, Pretsch H (2011) Listric versus planar normal fault geometry: an example from the Eisenstadt-Sopron Basin (E Austria). Int J Earth Sci 100:1885–1895

    Article  Google Scholar 

  • Starkel L (2003) Climatically controlled terraces in uplifting mountains areas. Quat Sci Rev 22:2189–2198

  • Szabó P (1961) Angaben zur Entwicklung des Flußnetzes im Wiener Becken und auf ungarischem Gebiet während des Quartärs auf Grund der Schwermineralanalysen. XXVIII, Geographischer Jahresbericht aus Österreich, Bd

    Google Scholar 

  • Szádeczky-Kardoss E (1937) Über die Entwicklungsgeschichte des Leithaflusses. Internationale Zeitschrift der ungarischen geographischen Gesellschaft 65:50–54

    Google Scholar 

  • Szádeczky-Kardoss E (1938) Geologie der Rumpfungarländischen Kleinen Tiefebene mit Berücksichtigung der Donaugoldfrage. Mitteilungen der berg- und hüttenmännischen Abteilung an der Königlich-Ungarischen Hochschule für Berg- und Forstwesen Sopron, 10, p 444

  • Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine-Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci 88:98–110

    Article  Google Scholar 

  • Szarka L, Lueger J, Kohlbeck F, Ubrankovics C (2003) New contribution of geophysics to geology and hydrology of Lake Neusiedl (Neusiedlersee/Fertõ, Austria/Hungary). Proceedings of the 9th meeting of environmental and engineering geophysics (invited), P-067

  • Székely B, Zámolyi A, Draganits E, Briese C (2009) Geomorphic expression of neotectonic activity in a low relief area in an Airborne Laser Scanning DTM: a case study of the Little Hungarian Plain (Pannonian Basin). Tectonophysics 474(1–2):353–366

    Article  Google Scholar 

  • Szontagh T (1904) Geologisches Studium des Fertő-Sees. Jahresberichte der Königlich Ungarischen Geologischen Anstalt 1902:206–211

    Google Scholar 

  • Tari G (1994) Alpine tectonics of the Pannonian Basin. Ph.D. Thesis, Rice University, Houston, Texas, p 501

  • Tari G (1996) Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary). In: Ziegler PA, Horváth F (eds) Peri-Tethys Memoir 2: structure and prospects of Alpine Basins and Forelands. Mém Mus Natn Hist Nat 170, pp 439–454

  • Tauber AF (1959a) Geologische Stratigraphie und Geschichte des Neusiedlerseegebietes. Wissenschaftliche Arbeiten aus dem Burgenland 23:18–24

    Google Scholar 

  • Tauber AF (1959b) Hydrogeologie und hydrochemie der parndorfer heideplatte. Burgenländische. Heimatblätter, 21. Jg., Heft 1, Eisenstadt

  • Tauber AF (1959c) Zur Oberflächengeologie des Seewinkels. Wissenschaftliche Arbeiten aus dem Burgenland 23:24–26

    Google Scholar 

  • Tauber AF (1959d) Grundzüge der Tektonik des Neusiedlerseegebietes. Wissenschaftliche Arbeiten aus dem Burgenland 23:26–31

    Google Scholar 

  • Tauber AF, Wieden P (1959) Zur Sedimentschichtfolge im Neusiedlersee. Wissenschaftliche Arbeiten aus dem Burgenland 23:68–73

    Google Scholar 

  • Timár G, Rácz T (2002) The effects of neotectonic and hydrological processes on the flood hazard of the Tisza region (E. Hungary). EGU Stephan Mueller Special Publication Series 3:267–275

  • Timár G, Székely B, Zámolyi A, Houseman G, Stuart G, Grasemann B, Dombrádi E, Galsa A, Spahic D, Draganits E, ELTE-Leeds-UniWien Workgroup Team (2009) Neotectonic implications by geophysical surveys of topographic features identified by Airborne Laser Scanning in the Neusiedlersee/Ferto area (Austria/Hungary). Geophysical Research Abstracts, 11:92401

  • Tollmann A (1985) Geologie von Österreich. Deuticke, Wien

  • Tóth T (2003) Folyóvízi szeizmikus mérések. Ph.D. Thesis, Eötvös Loránd University, Budapest, p 141

  • Tóth L, Mónus P, Zsíros T, Bus Z, Kiszely M, Czifra T (2007) Hungarian Earthquake Bulletin 1995–2007. http://www.georisk.hu. 6 Oct 2013

  • Uhrin A, Sztanó O (2012) Water-level changes and their effect on deepwater sand accumulation in a lacustrine system: a case study from the Late Miocene of western Pannonian Basin, Hungary. Int J Earth Sci 101:1427–1440

    Article  Google Scholar 

  • van Husen D (2004) Quaternary glaciations in Austria. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology a closer look. Dev Quat Sci, 15:15–28

  • Vasiliev I, de Leeuw A, Filipescu S, Krijgsman W, Kuiper K, Stoica M, Briceag A (2010) The age of the Sarmatian–Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeogr Palaeoclimatol Palaeoecol 297:54–69

    Article  Google Scholar 

  • Wagner T, Fabel D, Fiebig M, Häuselmann P, Sahy D, Xu S, Stüwe K (2010) Young uplift in the non-glaciated parts of the Eastern Alps. Earth Planet Sci Lett 295:159–169

    Article  Google Scholar 

  • Wagreich M, Marschalko R (1995) Late Cretaceous to Early Tertiary palaeogeography of the Western Carpathians (Slovakia) and the Eastern Alps (Austria): implications from heavy mineral data. Geol Rundsch 84:187–199

    Article  Google Scholar 

  • Wallinga J, Murray A, Wintle A (2000) The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grained feldspar. Radiat Meas 32:529–533

    Article  Google Scholar 

  • Weissmann GS, Hartley AJ, Nichols GJ, Scuderi LA, Olson M, Buehler H, Banteah R (2010) Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38:39–42

    Article  Google Scholar 

  • Wessely G (1961) Geologie der Hainburger Berge. Jb Geol BA 104(2):273–349

    Google Scholar 

  • Wessely G (2006) Niederösterreich. Geologische Bundesanstalt, Wien, Geologie der Österreichischen Bundesländer, p 416

    Google Scholar 

  • Wiedl T, Harzhauser M, Kroh A, Ćorić S, Piller WE (2014) From biologically to hydrodynamically controlled carbonate production by tectonically induce paleogeographic rearrangement (Middle Miocene, Pannonian Basin). Facies 60:865–881

    Article  Google Scholar 

  • Wieseneder H, Maurer I (1958) Ursachen der räumlichen und zeitlichen Änderung des Mineralbestandes der Sedimente des Wiener Beckens. Eclogae Geolog Helv 51:1155–1172

    Google Scholar 

  • Wypyrsczyk B, Boenigk W, Heumüller G (1992) Fehlerabschätzung bei Schwermineralanalysen. Eiszeitalt Ggw 42:62–71

    Google Scholar 

  • Zámolyi A, Székely B, Draganits E, Timár G (2010) Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology 122:231–243

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Austrian Science Fund (FWF projects P20092-N10 and V151-N22) and University project FA 536001 [Karpatian Tectonics II]. Field work of the lake drillings and shallow-lake seismics was kindly supported by the Biologische Station (Alois Herzig), UWITEC, and students of the University of Vienna, Eötvös Loránd University, Budapest, and the University of Leeds. Many thanks to Maria Heinrich for the access to the counterflush data in the drill core archive of the Austrian Geological Survey and to OMV Austria Exploration and Production GmbH for the permission to use seismic lines in the Seewinkel area. The authors thank Franz Neubauer very much for the petrographic review of outcrop samples, Mathias Harzhauser for the paleontological investigation of the lake drill cores, Zsófia Ruszkiczay-Rüdiger for extensive discussions on the role of eolian erosion, Magda Bottig for heavy mineral counting, Markus Schwab for logistic support with coring and Hugh Rice for improving content and style. The improvements by Michal Kováč and an anonymous reviewer are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zámolyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zámolyi, A., Salcher, B., Draganits, E. et al. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. Int J Earth Sci (Geol Rundsch) 106, 1695–1721 (2017). https://doi.org/10.1007/s00531-016-1383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1383-3

Keywords

Navigation