International Journal of Earth Sciences

, Volume 106, Issue 2, pp 477–500 | Cite as

Two-stage partial melting during the Variscan extensional tectonics (Montagne Noire, France)

  • Marc PoujolEmail author
  • Pavel Pitra
  • Jean Van Den Driessche
  • Romain Tartèse
  • Gilles Ruffet
  • Jean-Louis Paquette
  • Jean-Charles Poilvet
Original Paper


One of the striking features that characterise the late stages of the Variscan orogeny is the development of gneiss and migmatite domes, as well as extensional Late Carboniferous and Permian sedimentary basins. It remains a matter of debate whether the formation of domes was related to the well-documented late orogenic extension or to the contractional tectonics that preceded. Migmatization and magmatism are expected to predate extension if the domes are compression-related regional anticlines, but they must both precede and be contemporaneous with extension if they are extensional core complexes. In the Montagne Noire area (southern French Massif Central), where migmatization, magmatism and the deformation framework are well documented, the age of the extensional event was unequivocally constrained to 300–290 Ma. Therefore, dating migmatization in this area is a key point for discriminating between the two hypotheses and understanding the Late Palaeozoic evolution of this part of the Variscan belt. For this purpose, a migmatite and an associated anatectic granite from the Montagne Noire dome were dated by LA-ICP-MS (U–Th–Pb on zircon and monazite) and laser probe 40Ar-39Ar (K–Ar on muscovite). Although zircon did not record any Variscan age unequivocally related to compression (380-330 Ma), two age groups were identified from the monazite crystals. A first event, at ca. 319 Ma (U–Th–Pb on monazite), is interpreted as a first stage of migmatization and as the emplacement age of the granite, respectively. A second event at ca. 298–295 Ma, recorded by monazite (U–Th–Pb) and by the muscovite 40Ar-39Ar system in the migmatite and in the granite, could be interpreted as a fluid-induced event, probably related to a second melting event identified through the syn-extensional emplacement of the nearby Montalet leucogranite ca. 295 Ma ago. The ages of these two events post-date the Variscan compression and agree with an overall extensional context for the development of the Montagne Noire dome-shaped massif. Comparison of these results with published chemical (EPMA) dating of monazite from the same rocks demonstrates that the type of statistical treatment applied to EPMA data is crucial in order to resolve different monazite age populations.


Monazite LA-ICP-MS U–Th–Pb dating Muscovite 40Ar-39Ar dating Variscan Montagne Noire 



Xavier Le Coz is acknowledged for making promptly the thin sections required for our study, Yann Lepagnot for the efficient rock crushing, and Thomas Delhaye for help with NanoSIMS analysis. Jean-Marc Montel and an anonymous reviewer are thanked for their constructive remarks on a previous version of this manuscript. The reviews of P. Rey and E. Oliot are acknowledged.

Supplementary material

531_2016_1369_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (PDF 51 kb)


  1. Alabouvette B, Demange M (1993) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Pons (1013). BRGM, OrléansGoogle Scholar
  2. Arthaud F (1970) Etude tectonique comparée de deux domaines hercyniens: les nappes de la Montagne Noire (France) et l’anticlinorium de l’Igliesente (Sardaigne), Thesis, Universiy of Montpellier, Publications USTELA Géol. StructGoogle Scholar
  3. Arthaud F, Matte P (1977) Late Paleozoic strike slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320CrossRefGoogle Scholar
  4. Arthaud F, Mattauer M, Proust F (1966) La structure et la microtectonique des nappes hercyniennes de la Montagne Noire. In: Etages tectoniques: colloque de Neuchâtel, 18–19 avril 1966, Université de Neuchâtel, pp 231–243Google Scholar
  5. Barbey P, Villaros A, Marignac C, Montel J-M (2015) Multiphase melting, magma emplacement and P-T-time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Géol Fr 186(2–3):93–116CrossRefGoogle Scholar
  6. Becq-Giraudon JF, Van Den Driessche J (1993) Continuité de la sédimentation entre le Stéphanien et l’Autunien dans le bassin de Graissessac-Lodève (sud du Massif Central): implications tectoniques. Comptes Rendus de l’Acad des Sci sér 2(317):939–945Google Scholar
  7. Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93:271–291CrossRefGoogle Scholar
  8. Blès J-L, Bonijoly C, Castaing C, Gros Y (1989) Sucessive post-Varican stress fields in the French Massif Central and its borders (Western European plate): comparison with geodynamica data. Tectonophysics 169:79–111CrossRefGoogle Scholar
  9. Bogdanoff S, Donnot F, Ellenberger F (1984) Note explicative, Carte géol. France (1/50 000), feuille Bédarieux (988). BRGM, OrléansGoogle Scholar
  10. Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal J-L, Cherneva Z, Gerdjikov I, Paquette J-L (2009) Fluid-induced disturbance of the monazite Th–Pb chronometer: In situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302CrossRefGoogle Scholar
  11. Boutin A, de Saint Blanquat M, Poujol M, Boulvais P, de Parseval P, Rouleau C, Robert JF (2015) Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc-chlorite deposit. Int J Earth Sci. doi: 10.1007/s00531-015-1223-x Google Scholar
  12. Bruguier O, Becq-Giraudon JF, Champenois M, Deloule E, Ludden J, Mangin D (2003) Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post-collisional extension: a case study from the French Massif Central. Chem Geol 201:319–336CrossRefGoogle Scholar
  13. Brun J-P, Van Den Driessche J (1994) Extensional gneiss domes and detachment fault systems: structures and kinematics. Bull de la Soc Géol de Fr 165:519–530Google Scholar
  14. Brunel M, Lansigu C (1997) Déformation et cinématique de mise en place du dôme de la zone axiale de la Montagne Noire: signification des nodules à quartz-sillimanite (Massif central français) [Deformation and kinematics of emplacement of the axial dome of the Montagne Noire: implications of quartz-sillimanite nodule attitudes (French Massif Central)]. Comptes Rendus de l’Acad des Sci Paris Ser IIA Earth Planet Sci 325:517–523Google Scholar
  15. Burg J-P, Matte PJ (1978) A Cross section through the French Massif central and the scope of its Variscan geodynamic evolution. Z der Dtsch Geol Ges 129:429–460Google Scholar
  16. Burg J-P, Van Den Driessche J, Brun J-P (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol Fr 3:33–51Google Scholar
  17. Cassard D, Feybesse J-L, Lescuyer J-L (1993) Variscan crustal thickening, extension and late overstacking during the Namurian-Westphalian in the western Montagne Noire. Tectonophycics 222:33–53CrossRefGoogle Scholar
  18. Cathelineau M, Boiron M-C, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Part II: time-space relationships between U, Au and Sn-W ore deposition and geodynamic events—mineralogical and U–Pb data. Tectonophysics 177:59–79CrossRefGoogle Scholar
  19. Charles N, Faure M, Chen Y (2009) The Montagne Noire migmatitic dome emplacement (French Massif Central): new insights from petrofabric and AMS studies. J Struct Geol 31:1423–1440CrossRefGoogle Scholar
  20. Cocherie A, Albarède F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 65:4509–4522CrossRefGoogle Scholar
  21. Cocherie A, Legendre O, Peucat J-J, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th–U–total lead determination; implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497CrossRefGoogle Scholar
  22. Demange M (1982) Etude géologique du massif de l’Agout, Montagne Noire. France, Thèse d’Etat, University Paris 6Google Scholar
  23. Demange M, Guérangé-Lozes J, Guérangé B (1995) Notice explicative, Carte géol. France (1/50 000), feuille Lacaune (987). Orléans, BRGM, p 153Google Scholar
  24. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette J-L, Montel J-M, Devidal J-L (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid-rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Miner Petrol 165:1051–1072CrossRefGoogle Scholar
  25. Doublier MP, Potel S, Wemmer K (2015) The tectono-metamorphic evolution of the very low-grade hangingwall constrains two-stage gneiss dome formation in the Montagne Noire (Southern France). J Metamorph Geol 33:71–89CrossRefGoogle Scholar
  26. Echtler H (1990) Geometry and kinematics of recumbent folding and low-angle detachment in the Pardailhan nappe (Montagne Noire, Southern French Massif Central). Tectonophysics 177:109–123CrossRefGoogle Scholar
  27. Echtler H, Malavieille J (1990) Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177:125–138CrossRefGoogle Scholar
  28. Faure M, Cottereau N (1988) Données cinématiques sur la mise en place du dôme migmatitique carbonifère moyen de la zone axiale de la Montagne noire (Massif central français). Comptes rendus de l’Acad des Sci 307:1787–1794Google Scholar
  29. Faure M, Cocherie A, Bé Mézème E, Charles N, Rossi P (2010) Middle Carboniferous crustal melting in the Variscan belt: new insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res 18:653–673CrossRefGoogle Scholar
  30. Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:327–340CrossRefGoogle Scholar
  31. Franke W, Doublier MP, Klama K, Potel S, Wemmer K (2011) Hot metamorphic core complex in a cold foreland. Int J Earth Sci 100:753–785CrossRefGoogle Scholar
  32. Gardés E, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2007) Pb diffusion in monazite: New constraints from the experimental study of Pb2+⇔Ca2+ interdiffusion. Geochim Cosmochim Acta 71:4036–4043CrossRefGoogle Scholar
  33. Gasquet D, Bertrand J-M, Paquette J-L, Lehmann J, Ratzov G, De Ascenção Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermalism in the Lauzière Massif (French Western Alps): New U–Th–Pb and Argon ages. Bull de la Soc Géol de Fr 181:227–241CrossRefGoogle Scholar
  34. Hollister LS (1993) The role of melt in the uplift and exhumation of orogenic belts. Chem Geol 108:31–48CrossRefGoogle Scholar
  35. Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32:149–159CrossRefGoogle Scholar
  36. Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: reevaluation and implications. Lithos 56:1–14CrossRefGoogle Scholar
  37. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th-Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geoth Res 198:275–287CrossRefGoogle Scholar
  38. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  39. Jercinovic MJ, Williams ML (2005) Analytical perils (and progress) in electron microprobe trace elements analysis applied to geochronology: background, interferences and beam irradiation effects. Am Miner 90:526–546CrossRefGoogle Scholar
  40. Jourdan F, Renne PR (2007) Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochim Cosmochim Acta 71:387–402CrossRefGoogle Scholar
  41. Jourdan F, Verati C, Féraud G (2006) Intercalibration of the Hb3gr 40Ar/39Ar dating standard. Chem Geol 231:77–189CrossRefGoogle Scholar
  42. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212CrossRefGoogle Scholar
  43. Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim Cosmochim Acta 62:665–676CrossRefGoogle Scholar
  44. Ludwig KR (2001) User’s manual for Isoplot/Ex Version 2.49, a geochronological toolkit for Microsoft Excel. Spec Publ. 1a. Berkeley Geochronological Center, Berkeley, USAGoogle Scholar
  45. Maluski H, Costa S, Echtler H (1991) Late Variscan tectonic evolution by thinning of earlier thickened crust. An 40Ar-39Ar study of the Montagne Noire, southern Massif Central, France. Lithos 26:287–304CrossRefGoogle Scholar
  46. Matte P, Lancelot J, Mattauer M (1998) The Montagne Noire Axial Zone is not an extensional metamorphic core complex but a compressional post-nappe anticline with an anatectic core. Geodin Acta 11:3–22Google Scholar
  47. Ménard G, Molnar P (1988) Collapse of a Hercynian Tibetan plateau into a late Paleozoic European Basin and Range province. Nature 334:235–237CrossRefGoogle Scholar
  48. Montel J-M, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P high-T Velay anatectic Dome (French Massif Central). J Metamorph Geol 10:1–15CrossRefGoogle Scholar
  49. Montel J, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  50. Mougeot R, Respaut J-P, Ledru P, Marignac C (1997) U–Pb geochronology on accessory minerals of the Velay anatectic Dome (French Massif Central). Eur J Miner 9:141–156Google Scholar
  51. Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotopes dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237CrossRefGoogle Scholar
  52. Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208CrossRefGoogle Scholar
  53. Pitra P, Poujol M, Van Den Driessche J, Poilvet J-C, Paquette J-L (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope,”C/S-like” orthogneiss (Montagne Noire, French Massif Central). CR Geosci 344:377–384CrossRefGoogle Scholar
  54. Poilvet J-C, Poujol M, Pitra P, Van Den Driessche J, Paquett J-L (2011) The Montalet granite, Montagne Noire, France: an early Permian syn-extensional pluton as evidenced by new U–Th–Pb data on zircon and monazite. CR Geosci 343:454–461CrossRefGoogle Scholar
  55. Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U–Th–Pb geochronology and nuclear ceramics. Geochimica and Cosmochimica Acta 64:3283–3297CrossRefGoogle Scholar
  56. Pommier A, Cocherie A, Legendre O (2002) EPMA dating user’s manual: age calculation from electron probe microanalyser measurements of U–Th–Pb. BRGM internal report, p 9Google Scholar
  57. Rabin M, Trap P, Carry N, Fréville K, Centi-Tok B, Lobjoie C, Goncalves P, Marquer D (2015) Strain partitioning along the anatectic front in the Variscan Montagne Noire massif (southern French Massif Central). Tectonics. doi: 10.1002/2014TC003790 Google Scholar
  58. Renne PR, Mundil R, Balco G, Min K, Ludwig RL (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  59. Renne PR, Balco G, Ludwig RL, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz et al. on “Joint determination of (40)K decay constants and (40)Ar*/(40)K for the Fish Canyon sanidine standard, and improved accuracy for (40)Ar/(39)Ar geochronology” by PR Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100CrossRefGoogle Scholar
  60. Rey PF, Teyssier C, Whitney DL (2011) Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39:387–390CrossRefGoogle Scholar
  61. Roddick JC (1983) High precision intercalibration of 40Ar/39Ar standards. Geochim Cosmochim Acta 47:887–898CrossRefGoogle Scholar
  62. Roger F, Respaut J-P, Brunel M, Matte P, Paquette J-L (2004) U–Pb dating of Augen orthogneisses from the Axial Zone of the Montagne Noire (Southern Massif Central): new witness of Ordovician magmatism into the Variscan Belt. CR Geosci 336:19–28CrossRefGoogle Scholar
  63. Roger F, Teyssier C, Respaut J-P, Rey PF, Jolivet M, Whitney DL, Paquette J-L, Brunel M (2015) Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640–641:53–69CrossRefGoogle Scholar
  64. Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Miner Petrol 140:458–468CrossRefGoogle Scholar
  65. Ruffet G, Féraud G, Amouric M (1991) Comparison of 40Ar/39Ar conventional and laser dating of biotites from the North Trégor Batholith. Geochim Cosmochim Acta 55:1675–1688CrossRefGoogle Scholar
  66. Ruffet G, Féraud G, Ballèvre M, Kiénast JR (1995) Plateau ages and excess argon on phengites: a 40Ar/39Ar laser probe study of alpine micas (Sesia zone). Chem Geol 121:327–343CrossRefGoogle Scholar
  67. Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  68. Schuiling RD (1960) Le dôme gneissique de l’Agout (Tarn et Hérault). Mém Soc géol France 39(91):1–59Google Scholar
  69. Soula JC, Debat P, Brusset S, Bessière G, Christophoul F, Déramond J (2001) Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne noire, Southern French Hercynian Belts. J Struct Geol 23:1677–1699CrossRefGoogle Scholar
  70. Spear FS, Pyle JM (2010) Theoretical modeling of monazite growth in a low-Ca metapelite. Chem Geol 273:111–119CrossRefGoogle Scholar
  71. Spear FS, Pyle JM, Cherniak D (2009) Limitations of chemical dating of monazite. Chem Geol 266:218–230CrossRefGoogle Scholar
  72. Taner MF, Martin RF (1993) Significance of dumortierite in an aluminosilicate-rich alteration zone, Louvicourt, Quebec. Can Miner 31:137–146Google Scholar
  73. Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011) Simultaneous resetting of the muscovite K–Ar and monazite U–Pb geochronometers: a story of fluids. Terra Nova 23:390–398CrossRefGoogle Scholar
  74. Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette J-L, Ireland TR, Deloule E (2012) Mylonites of the South Armorican Shear Zone: insights for crustal-scale fluid flow and water-rock interaction processes. J Geodyn 56–57:86–107CrossRefGoogle Scholar
  75. Thompson AB (2001) Clockwise P-T paths for crustal melting and H2O recycling in granite source regions and migmatite terrains. Lithos 56:33–45CrossRefGoogle Scholar
  76. Turner G, Huneke JC, Podosek FA, Wasserburg GJ (1971) 40Ar/39Ar ages and cosmic ray exposure age of Apollo 14 samples. Earth Planet Sci Lett 12:19–35CrossRefGoogle Scholar
  77. Van Den Driessche J, Brun J-P (1989) Un modèle cinématique de l’extension paléozoïque supérieur dans le sud du Massif Central. Comptes Rendus de l’Acad des Sci Sér 2(309):1607–1613Google Scholar
  78. Van Den Driessche J, Brun J-P (1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional dome. Geodin Acta 5:85–99CrossRefGoogle Scholar
  79. Van Den Driessche J, Pitra P (2012) Viscous collision channel explains double dome in metamorphic core complexes: comment. Geology 40:e279CrossRefGoogle Scholar
  80. Velichkin VI, Vlasov BP (2011) Domal structures and hydrothermal uranium deposits of the Erzgebirge, Saxony, Germany. Geol Ore Depos 53:74–83CrossRefGoogle Scholar
  81. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  82. Williams ML, Jercinovic MJ, Harlov DE, Budzyn Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marc Poujol
    • 1
    Email author
  • Pavel Pitra
    • 1
  • Jean Van Den Driessche
    • 1
  • Romain Tartèse
    • 2
    • 3
  • Gilles Ruffet
    • 1
  • Jean-Louis Paquette
    • 4
  • Jean-Charles Poilvet
    • 1
  1. 1.Géosciences Rennes, UMR CNRS 6118, OSURUniversité Rennes 1Rennes CedexFrance
  2. 2.Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire NaturelleSorbonne Universités, CNRS, UMPC & IRDParisFrance
  3. 3.Planetary and Space SciencesThe Open UniversityMilton KeynesUK
  4. 4.UMR CNRS 6524, Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-Ferrand CedexFrance

Personalised recommendations