Skip to main content
Log in

Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral-chemical evidence

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The magmatic evolution of the Variscan Albtal pluton, Schwarzwald, SW Germany, is explored using detailed textural observations and the chemical composition of plagioclase and biotite in both granite and its mafic magmatic enclaves (MMEs). MMEs probably formed in a two-step process. First, mafic magma intruded a granitic magma chamber and created a boundary layer, which received thermal and compositional input from the mafic magma. This is indicated by corroded “granitic” quartz crystals and by large “granitic” plagioclase xenocrysts, which contain zones of higher anorthite and partly crystallized from a melt of higher Sr content. Texturally, different plagioclase types (e.g. zoned and inclusion-rich types) correspond to different degrees of overprint most likely caused by a thermal and compositional gradient in the boundary layer. The intrusion of a second mafic magma batch into the boundary layer is recorded by a thin An50 zone along plagioclase rims that crystallized from a melt enriched in Sr. Most probably, the second mafic intrusion caused disruption of the boundary layer, dispersal of the hybrid magma in the granite magma and formation of the enclaves. Rapid thermal quenching of the MMEs in the granite magma is manifested by An30 overgrowths on large plagioclase grains that contain needle apatites. Our results demonstrate the importance of microtextural investigations for the reconstruction of possible mixing end members in the formation of granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altherr R, Henjes-Kunst F, Langer C, Otto J (1999) Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch pluton (European Variscides, Schwarzwald, Germany). Contrib Mineral Petrol 137:304–322. doi:10.1007/s004100050552

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177 http://dx.doi.org/10.1016/j.lithos.2004.05.010

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth Environ Sci Trans R Soc Edinb 83:145–153. doi:10.1017/S0263593300007835

    Article  Google Scholar 

  • Bateman R, Martín MP, Castro A (1992) Mixing of cordierite granitoid and pyroxene gabbro, and fractionation, in the Santa Olalla tonalite (Andalucia). Lithos 28:111–131. doi:10.1016/0024-4937(92)90027-V

    Article  Google Scholar 

  • Blundy JD, Shimizu N (1991) Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth Planet Sci Lett 102:178–197. doi:10.1016/0012-821X(91)90007-5

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209. doi:10.1016/0016-7037(91)90411-W

    Article  Google Scholar 

  • Brophy JG, Dorais MJ, Donnelly-Nolan J, Singer BS (1996) Plagioclase zonation styles in hornblende gabbro inclusions from Little Glass Mountain. Medicine Lake volcano, California: implications for fractionation mechanisms and the formation of composition gaps. Contrib Mineral Petrol 126:121–136. doi:10.1007/s004100050239

    Article  Google Scholar 

  • Büsch W, Otto J (1980) Endogenetic inclusions in granites of the Black Forest, Germany Neues Jahrbuch für Mineralogie, Monatshefte 269–282

  • Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian massif. Geol Rundsch 86:21–38. doi:10.1007/s005310050119

    Article  Google Scholar 

  • Cashman K, Blundy J (2013) Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib Mineral Petrol 166:703–729. doi:10.1007/s00410-013-0895-0

    Article  Google Scholar 

  • Chappell BW (1996) Magma mixing and the production of compositional variation within granite suites: evidence from the granites of Southeastern Australia. J Petrol 37:449–470. doi:10.1093/petrology/37.3.449

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi:10.1016/j.lithos.2012.01.001

    Article  Google Scholar 

  • Clemens JD, Helps PA, Stevens G (2009) Chemical structure in granitic magmas—a signal from the source? Earth Environ Sci Trans R Soc Edinb 100:159–172. doi:10.1017/S1755691009016053

    Google Scholar 

  • Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915 Lassen Peak, California. J Petrol 40:105–132. doi:10.1093/petroj/40.1.105

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144. doi:10.1016/S0377-0273(02)00309-8

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039

    Article  Google Scholar 

  • Couch S, Harford CL, Sparks RSJ, Carroll MR (2003) Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrire Hills volcano, Montserrat. J Petrol 44:1455–1475. doi:10.1093/petrology/44.8.1455

    Article  Google Scholar 

  • Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170. doi:10.1016/j.jvolgeores.2004.07.019

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology, vol 13. Elsevier, Amsterdam, pp 19–23

    Google Scholar 

  • Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275:21–27

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450

    Article  Google Scholar 

  • Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21. doi:10.1029/TC008i001p00001

    Article  Google Scholar 

  • Emmermann R (1968) Differentiation und Metasomatose des Albtalgranits (Südschwarzwald). N Jahrb Mineral Abh 109:96–130

    Google Scholar 

  • Emmermann R, Daieva L, Schneider J (1975) Petrologic significance of rare earths distribution in granites. Contrib Mineral Petrol 52:267–283. doi:10.1007/BF00401457

    Article  Google Scholar 

  • Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H (2015) Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old transvaal supergroup carbonate platform, South Africa. Precambrian Res 266:27–46. doi:10.1016/j.precamres.2015.04.014

    Article  Google Scholar 

  • Farner MJ, Lee C-TA, Putirka KD (2014) Mafic–felsic magma mixing limited by reactive processes: a case study of biotite-rich rinds on mafic enclaves. Earth Planet Sci Lett 393:49–59. doi:10.1016/j.epsl.2014.02.040

    Article  Google Scholar 

  • Flood RH, Shaw SE (2014) Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: pressure quench cumulates. Lithos 198–199:92–102. doi:10.1016/j.lithos.2014.03.015

    Article  Google Scholar 

  • Furman T, Spera FJ (1985) Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an unusual dike complex at eagle lake, Sequoia National Park, California, U.S.A. J Volcanol Geotherm Res 24:151–178. doi:10.1016/0377-0273(85)90031-9

    Article  Google Scholar 

  • Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003) The Rand granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842. doi:10.1007/s00531-003-0361-8

    Article  Google Scholar 

  • Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184. doi:10.1016/S0040-1951(00)00254-7

    Article  Google Scholar 

  • Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology, vol 13. Elsevier, London, pp 431–444

    Google Scholar 

  • Hibbard MJ (1995) Petrography to petrogenesis, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hoefs J, Emmermann R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contrib Mineral Petrol 83:320–329. doi:10.1007/BF00371200

    Article  Google Scholar 

  • Hogan JP (1993) Monomineralic glomerocrysts: textural evidence for mineral resorption during crystallization of igneous rocks. J Geol 101:531–540. doi:10.2307/30068805

    Article  Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334. doi:10.1093/petrology/egl045

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Minerals and rocks, vol 22. Springer, Heidelberg

    Book  Google Scholar 

  • Kalt A, Grauert B, Baumann A (1994) Rb-Sr and U-Pb isotope studies on migmatites from the Schwarzwald (Germany): constraints on isotopic resetting during Variscan high-temperature metamorphism. J Metamorph Geol 12:667–680. doi:10.1111/j.1525-1314.1994.tb00050.x

    Article  Google Scholar 

  • Koteas GC, Williams ML, Seaman SJ, Dumond G (2010) Granite genesis and mafic-felsic magma interaction in the lower crust. Geology 38:1067–1070. doi:10.1130/g31017.1

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506. doi:10.2138/am.2009.3011

    Article  Google Scholar 

  • LeMaitre RW (2002) Igneous rocks: a classification and glossary of terms; recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138. doi:10.1007/BF00402106

    Article  Google Scholar 

  • Marschall HR, Kalt A, Hanel M (2003) P-t evolution of a variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44:227–253. doi:10.1093/petrology/44.2.227

    Article  Google Scholar 

  • Martin VM, Pyle DM, Holness MB (2006) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799. doi:10.1016/j.epsl.2006.06.030

    Article  Google Scholar 

  • Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161:119–133. doi:10.1016/S0012-821X(98)00144-7

    Article  Google Scholar 

  • Neves SP, Vauchez A (1995) Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos 34:275–299. doi:10.1016/0024-4937(94)00012-Q

    Article  Google Scholar 

  • Panjasawatwong Y, Danyushevsky L, Crawford A, Harris K (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432. doi:10.1007/s004100050024

    Article  Google Scholar 

  • Perugini D, Poli G (2012) The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos 153:261–277. doi:10.1016/j.lithos.2012.02.002

    Article  Google Scholar 

  • Pietranik A, Koepke J (2009) Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec intrusion NE Bohemian Massif, SW Poland. Contrib Mineral Petrol 158:17–36. doi:10.1007/s00410-008-0368-z

    Article  Google Scholar 

  • Pietranik A, Koepke J (2014) Plagioclase transfer from a host granodiorite to mafic microgranular enclaves: diverse records of magma mixing. Mineral Petrol 1–14 doi:10.1007/s00710-014-0326-6

  • Pietranik A, Waight TE (2008) Processes and sources during late Variscan Dioritic-Tonalitic magmatism: insights from plagioclase chemistry (gęsiniec intrusion, NE Bohemian Massif, Poland). J Petrol 49:1619–1645. doi:10.1093/petrology/egn040

    Article  Google Scholar 

  • Pietranik A, Koepke J, Puziewicz J (2006) Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gęsiniec granodiorite, strzelin crystalline Massif, SW Poland) Lithos 86:260–280 http://dx.doi.org/10.1016/j.lithos.2005.05.008

  • Pitcher WS (1997) The nature and origin of granite, 2 nd edn. Chapman & Hall, London; Weinheim [u.a.]

  • Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461:1269–1273

    Article  Google Scholar 

  • Schaltegger U (2000) U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828. doi:10.1007/s005310050308

    Article  Google Scholar 

  • Schuler C (1983) Die interne SR-Isotopensystematik des herzynischen Albtalgranits (Schwarzwald). Zürich, Techn. Hochsch., Diss., 1983, Zürich

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798

    Article  Google Scholar 

  • Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108. doi:10.1007/s004100050237

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124. doi:10.1016/0377-0273(86)90041-7

    Article  Google Scholar 

  • Stenger R (1979) Petrographie und Geochemie der endogenen Einschlüsse im Albtalgranit (Südschwarzwald). Jahresheft des geologischen Landesamtes Baden-Württemberg 21:89–106

    Google Scholar 

  • Ubide T, Galé C, Larrea P, Arranz E, Lago M, Tierz P (2014) The relevance of crystal transfer to magma mixing: a case study in composite dykes from the central pyrenees. J Petrol 55:1535–1559. doi:10.1093/petrology/egu033

    Article  Google Scholar 

  • Ustunisik G, Kilinc A, Nielsen RL (2014) New insights into the processes controlling compositional zoning in plagioclase. Lithos 200–201:80–93. doi:10.1016/j.lithos.2014.03.021

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56:165–186. doi:10.1016/S0024-4937(00)00053-0

    Article  Google Scholar 

  • Weidendorfer D, Mattsson HB, Ulmer P (2014) Dynamics of Magma Mixing in Partially crystallized magma chambers: textural and petrological constraints from the basal complex of the austurhorn intrusion (SE Iceland). J Petrol 55:1865–1903. doi:10.1093/petrology/egu044

    Article  Google Scholar 

  • Wiebe RA, Smith D, Sturm M, King EM, Seckler MS (1997) Enclaves in the Cadillac Mountain granite (coastal maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–423. doi:10.1093/petroj/38.3.393

    Article  Google Scholar 

  • Wimmenauer W (1963) Einschlüsse im Albtalgranite (Südschwarzwald) und ihre Bedeutung für dessen Vorgeschichte. Neues Jahrbuch für Mineralogie, Monatshefte 1:6–17

    Google Scholar 

  • Wyllie PJ, Cox KG, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3:238–243. doi:10.1093/petrology/3.2.238

    Article  Google Scholar 

Download references

Acknowledgments

Simone Kaulfuß is thanked for preparing the thin sections. Wolfgang Siebel, two anonymous reviewers and Editor Wolf-Christian Dullo gave thoughtful comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Michel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, L., Wenzel, T. & Markl, G. Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral-chemical evidence. Int J Earth Sci (Geol Rundsch) 106, 1505–1524 (2017). https://doi.org/10.1007/s00531-016-1363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1363-7

Keywords

Navigation