Abstract
The Palaeoproterozoic (2.0–1.8 Ga) Svecokarelian orogen in central Sweden consists of a low-pressure, predominantly medium-grade metamorphic domain (central part of Bergslagen lithotectonic unit), enclosed to the north and south by low-pressure migmatite belts. Two periods of metamorphism (1.87–1.85 and 1.83–1.79 Ga) are known in the migmatite belts. In this study, new U–Th–Pb ion microprobe data on zircon and monazite from twelve samples of locally migmatized gneisses and felsic intrusive bodies determine both protolith and metamorphic ages in four sample areas north of Stockholm, inside or immediately adjacent to the medium-grade metamorphic domain. Two orthogneiss samples from the Rimbo area yield unusually old protolith ages of 1909 ± 4 and 1908 ± 4 Ma, while three orthogneisses from the Skutskär and Forsmark areas yield more typical protolith ages between 1901 ± 3 and 1888 ± 3 Ma. Migmatized paragneiss samples from this and two earlier studies contain a significant detrital component sourced from this 1.9 Ga magmatic suite. They are interpreted to be deposited contemporaneously with or shortly after this magmatism. Migmatization of the paragneiss at Rimbo was followed by intrusion of leucogranite at 1846 ± 3 Ma. Even in the other sample areas to the north (Hedesunda-Tierp, Skutskär and Forsmark), metamorphism including migmatization is constrained to the 1.87–1.85 Ga interval and penetrative ductile deformation is limited by earlier studies in the Forsmark area to 1.87–1.86 Ga. However, apart from a metamorphic monazite age of 1863 ± 1 Ma, precise ages were not possible to obtain due to the presence of only partially reset recrystallized domains in zircon, or highly discordant U-rich metamict and altered metamorphic rims. Migmatization was contemporaneous with magmatic activity at 1.87–1.84 Ga in the Bergslagen lithotectonic unit involving a mantle-derived component, and there is a spatial connection between migmatization and this magmatic phase in the Hedesunda-Tierp sample area. The close spatial and temporal interplay between ductile deformation, magmatism and migmatization, the P–T metamorphic conditions, and the continuation of similar magmatic activity around and after 1.8 Ga support solely accretionary rather than combined accretionary and collisional orogenic processes as an explanation for the metamorphism. The generally lower metamorphic grade and restricted influence of the younger metamorphic episode, at least at the ground surface level, distinguishes the central part of the Bergslagen lithotectonic unit from the migmatite belts further north and south.
This is a preview of subscription content, access via your institution.












References
Åhäll K-I, Connelly JN (2008) Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. Precambrian Res 161:452–472
Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SM, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64
Andersen T, Andersson UB, Graham S, Åberg G, Simonsen SL (2009) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol Soc 166:233–247
Andersson UB (1997) The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). Sveriges Geologiska Undersökning, Unpublished report 03-819/93
Andersson UB (2004) Age and P–T paths of metamorphism in the Bergslagen region. Sveriges Geologiska Undersökning, Unpublished report 03-1025/97 (summary and appendices)
Andersson UB, Sjöström H, Högdahl K, Eklund O (2004) The Transscandinavian Igneous Belt, evolutionary model. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland Special Paper 37, pp 104–112
Andersson UB, Högdahl K, Sjöström H, Bergman S (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U–Pb geochronology. Geol Mag 143:679–697
Bergman S, Söderman J (2005a) Berggrundskartan 12H Söderfors NO, skala 1:50 000. Sveriges Geologiska Undersökning K37, Uppsala
Bergman S, Söderman J (2005b) Berggrundskartan 13H Gävle SO, skala 1:50 000. Sveriges Geologiska Undersökning K35, Uppsala
Bergman S, Persson P-O, Delin H, Stephens MB, Bergman T (2004) Age and significance of the Hedesunda granite and related rocks, south-central Sweden. Abstracts, 26th Nordic Geological Winter Meeting. GFF 126:18–19
Bergman S, Karis L, Söderman J (2005) Berggrundskartan 13H Gävle NO, skala 1:50 000. Sveriges Geologiska Undersökning K33, Uppsala
Bergman S, Billström K, Persson P-O, Skiöld T, Evins P (2006a) U-Pb age evidence for repeated Palaeoproterozoic metamorphism and deformation near the Pajala shear zone in the northern Fennoscandian shield. GFF 128:7–20
Bergman S, Sjöström H, Högdahl K (2006b) Transpressive shear related to arc magmatism: the Paleoproterozoic Storsjön-Edsbyn Deformation Zone, central Sweden. Tectonics 25:TC1004. doi:10.1029/2005TC001815
Claesson S, Huhma H, Kinny PD, Williams IS (1993) Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Res 64:109–130
Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoir 32, pp 579–598
Delin H, Söderman J (2005) Berggrundskartan 12H Söderfors NV, skala 1:50 000. Sveriges Geologiska Undersökning K36, Uppsala
Ehlers C, Lindroos A, Selonen O (1993) The late Svecofennian granite-migmatite zone of southern Finland—a belt of transpressive deformation and granite emplacement. Precambrian Res 64:295–309
Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52
Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Res 153:29–45
Hermansson T, Stephens MB, Corfu F, Page L, Andersson J (2008a) Migratory tectonic switching, western Svecofennian orogen, central Sweden: constraints from U/Pb zircon and titanite geochronology. Precambrian Res 161:250–278
Hermansson T, Stephens MB, Page LM (2008b) 40Ar/39Ar hornblende geochronology from the Forsmark area in central Sweden: constraints on late Svecofennian cooling, ductile deformation and exhumation. Precambrian Res 167:303–315
Högdahl K, Andersson UB, Eklund O (eds) (2004) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 125 pp
Högdahl K, Sjöström H, Andersson UB, Ahl M (2008) Continental margin magmatism and migmatisation in the west-central Fennoscandian Shield. Lithos 102:435–459
Högdahl K, Sjöström H, Bergman S (2009) Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics 28:TC1003. doi:10.1029/2008TC002277
Högdahl K, Majka J, Sjöström H, Persson-Nilsson K, Claesson S, Konecný P (2012) Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden. Contrib Mineral Petrol 163:167–188
Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439
Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds.) Zircon. Rev Mineral Geochem 53:27–62
Ivarsson C, Johansson Å (1995) U–Pb zircon dating of Stockholm granite at Frescati. GFF 117:67–68
Johansson Å, Hålenius U (2013) Palaeoproterozoic mafic intrusions along the Avesta–Östhammar belt, east-central Sweden: mineralogy, geochemistry, and magmatic evolution. Int Geol Rev 55:131–157
Kampmann TC, Stephens MB, Weihed P (2016) 3D modelling and sheath folding at the Falun pyritic Zn–Pb–Cu–(Au–Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden. Miner Depos. doi:10.1007/s00126-016-0638-z
Kärki A, Laajoki K, Luukas J (1993) Major Palaeoproterozoic shear zones of the central Fennoscandian Shield. Precambrian Res 64:207–223
Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2 000 000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia
Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoir 32, pp 561–578
Lahtinen R, Huhma H, Kousa J (2002) Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data. Precambrian Res 116:81–109
Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian Geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier B.V, Amsterdam, pp 481–532
Lahtinen R, Garde AA, Melezhik VA (2008) Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31:20–28
Lahtinen R, Korja A, Nironen M, Heikkinen P (2009) Palaeoproterozoic accretionary processes in Fennoscandia. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geological Society, London, Special Publication 318, London, pp 237–256
Ludwig KR (2003) A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication 4, Berkeley
Mansfeld J, Beunk FF, Barling J (2005) 1.83–1.82 Ga formation of a juvenile volcanic arc—implications from U–Pb and Sm–Nd analyses of the Oskarshamn-Jönköping Belt, southeastern Sweden. GFF 127:149-157. doi:10.1080/11035890501272149
Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res 21:987–993
Middlemost EAK (1994) Naming materials in the magma/igneous system. Earth Sci Rev 37:215–224
Mouri H, Väisänen M, Huhma H, Korsman K (2005) Sm–Nd garnet and U–Pb monazite dating of high-grade metamorphism and crustal melting in the West Uusimaa area, southern Finland. GFF 127:123–128
Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precambrian Res 86:21–44
Nyström J-O (2004) Dala volcanism, sedimentation and structural setting. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland Special Paper 37, pp 58–70
Öhlander B, Romer RL (1996) Zircon ages of granites occurring along the Central Swedish Gravity Low. GFF 118:217–225
Park AF (1985) Accretion tectonism in the Proterozoic Svecokarelides of the Baltic Shield. Geology 13:725–729
Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125
Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983
Persson L, Persson P-O (1997) U-Pb datings of the Hedesunda and Åkersberga granites of south-central Sweden. GFF 119:91–95
Persson L, Persson P-O, Sträng M (2002) A new occurrence of orbicular granite in Stockholm. In: Bergman S (ed) Radiometric dating results 5. Sveriges Geologiska Undersökning C834, Uppsala, pp 50–57
Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22
Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138
Sandegren R, Asklund B (1948) Beskrivning till kartbladet Söderfors. Sveriges Geologiska Undersökning Aa190, Stockholm
Schreurs J, Westra L (1985) The thermotectonic evolution of a Proterozoic, low pressure, granulite dome, West Uusimaa, SW Finland. Contrib Mineral Petrol 93:236–250
Skyttä P, Mänttäri I (2008) Structural setting of late Svecofennian granites and pegmatites in Uusimaa Belt, SW Finland: age constraints and implications for crustal evolution. Precambrian Res 164:86–109
Skyttä P, Väisänen M, Mänttäri I (2006) Preservation of Paleoproterozoic early Svecofennian structures in the Orijärvi area, SW Finland—evidence for polyphase strain partitioning. Precambrian Res 150:153–172
Söderlund P, Hermansson T, Page LM, Stephens MB (2009) Biotite and muscovite 40Ar–39Ar geochronological constraints on the post-Svecofennian tectonothermal evolution, Forsmark site, central Sweden. Int J Earth Sci 98:1835–1851
Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221
Stålhös G (1969) Beskrivning till Stockholmstraktens berggrund (English summary: Solid rocks of the Stockholm region). Sveriges Geologiska Undersökning Ba24, Stockholm
Stålhös G (1972) Beskrivning till berggrundskartbladen Uppsala SV och SO (English summary: Solid rocks of the Uppsala region (map-sheets Uppsala SW and SE)). Sveriges Geologiska Undersökning Af105-106, Stockholm
Stephens MB, Andersson J (2015) Migmatization related to mafic underplating and intra- or back-arc spreading above a subduction boundary in a 2.0–1.8 Ga accretionary orogen, Sweden. Precambrian Res 264:235–257
Stephens MB, Ripa M, Lundström I, Persson L, Bergman T, Ahl M, Wahlgren C-H, Persson P-O, Wickström L (2009) Synthesis of bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Sveriges Geologiska Undersökning Ba58, Uppsala
Stephens MB, Follin S, Petersson J, Isaksson H, Juhlin Ch, Simeonov A (2015) Review of the deterministic modelling of deformation zones and fracture domains at the site proposed for a spent nuclear fuel repository, Sweden, and consequences of structural anisotropy. Tectonophysics 653:68–94
Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts. Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society, Special Publication 42, London, pp 313–345
Sundius N (1948) Beskrivning till berggrundskarta över Stockholmstrakten. Sveriges Geologiska Undersökning Ba13, Stockholm
Torvela T, Mänttäri I, Hermansson T (2008) Timing of deformation phases within the South Finland shear zone, SW Finland. Precambrian Res 160:277–298
Väisänen M, Mänttäri I, Kriegsman LM, Hölttä P (2000) Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos 54:63–81
Väisänen M, Mänttäri I, Hölttä P (2002) Svecofennian magmatic and metamorphic evolution in southwestern Finland as revealed by U–Pb zircon SIMS geochronology. Precambrian Res 116:111–127
Väisänen M, Eklund O, Lahaye Y, O’Brien H, Fröjdö S, Högdahl K, Lammi M (2012) Intra-orogenic Svecofennian magmatism in SW Finland constrained by LA–MC–ICP–MS zircon dating and geochemistry. GFF 134:99–114
Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46:291–318
Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion microprobe and imaging studies. Chem Geol 160:201–224
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23
Acknowledgments
Wen Zhang from Stockholm University assisted with mineral separation, and Gary Wife and Stefan Gunnarsson at the Evolution Biology Center of Uppsala University with the BSE imaging of zircon and monazite. Kerstin Lindén from the NordSIM facility at the Swedish Museum of Natural History prepared the zircon and monazite epoxy mounts, Lev Ilyinsky assisted with the analyses, and Martin Whitehouse with calculations of the raw data. The NordSIM facility is jointly financed by the Swedish Museum of Natural History, the Swedish Research Council, the Norwegian Research Council, the Consortium of Danish geoscience institutions, the Geological Survey of Finland and the University of Iceland. This is NordSIM Contribution No. 462. This project was financed by an external research and development grant from the Geological Survey of Sweden (SGU) to ÅJ. We wish to acknowledge all this help and support, as well as the stimulating discussions with and good advice on zircon geochronology from Jenny Andersson at SGU in Uppsala, thorough reviews by Bernard Bingen and Hannu Huhma, and editorial handling by Victoria Pease.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Johansson, Å., Stephens, M.B. Timing of magmatism and migmatization in the 2.0–1.8 Ga accretionary Svecokarelian orogen, south-central Sweden. Int J Earth Sci (Geol Rundsch) 106, 783–810 (2017). https://doi.org/10.1007/s00531-016-1359-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-016-1359-3