Skip to main content

Timing of magmatism and migmatization in the 2.0–1.8 Ga accretionary Svecokarelian orogen, south-central Sweden

Abstract

The Palaeoproterozoic (2.0–1.8 Ga) Svecokarelian orogen in central Sweden consists of a low-pressure, predominantly medium-grade metamorphic domain (central part of Bergslagen lithotectonic unit), enclosed to the north and south by low-pressure migmatite belts. Two periods of metamorphism (1.87–1.85 and 1.83–1.79 Ga) are known in the migmatite belts. In this study, new U–Th–Pb ion microprobe data on zircon and monazite from twelve samples of locally migmatized gneisses and felsic intrusive bodies determine both protolith and metamorphic ages in four sample areas north of Stockholm, inside or immediately adjacent to the medium-grade metamorphic domain. Two orthogneiss samples from the Rimbo area yield unusually old protolith ages of 1909 ± 4 and 1908 ± 4 Ma, while three orthogneisses from the Skutskär and Forsmark areas yield more typical protolith ages between 1901 ± 3 and 1888 ± 3 Ma. Migmatized paragneiss samples from this and two earlier studies contain a significant detrital component sourced from this 1.9 Ga magmatic suite. They are interpreted to be deposited contemporaneously with or shortly after this magmatism. Migmatization of the paragneiss at Rimbo was followed by intrusion of leucogranite at 1846 ± 3 Ma. Even in the other sample areas to the north (Hedesunda-Tierp, Skutskär and Forsmark), metamorphism including migmatization is constrained to the 1.87–1.85 Ga interval and penetrative ductile deformation is limited by earlier studies in the Forsmark area to 1.87–1.86 Ga. However, apart from a metamorphic monazite age of 1863 ± 1 Ma, precise ages were not possible to obtain due to the presence of only partially reset recrystallized domains in zircon, or highly discordant U-rich metamict and altered metamorphic rims. Migmatization was contemporaneous with magmatic activity at 1.87–1.84 Ga in the Bergslagen lithotectonic unit involving a mantle-derived component, and there is a spatial connection between migmatization and this magmatic phase in the Hedesunda-Tierp sample area. The close spatial and temporal interplay between ductile deformation, magmatism and migmatization, the PT metamorphic conditions, and the continuation of similar magmatic activity around and after 1.8 Ga support solely accretionary rather than combined accretionary and collisional orogenic processes as an explanation for the metamorphism. The generally lower metamorphic grade and restricted influence of the younger metamorphic episode, at least at the ground surface level, distinguishes the central part of the Bergslagen lithotectonic unit from the migmatite belts further north and south.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Åhäll K-I, Connelly JN (2008) Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. Precambrian Res 161:452–472

    Article  Google Scholar 

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning CM, Kamo SM, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64

    Article  Google Scholar 

  • Andersen T, Andersson UB, Graham S, Åberg G, Simonsen SL (2009) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol Soc 166:233–247

    Article  Google Scholar 

  • Andersson UB (1997) The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). Sveriges Geologiska Undersökning, Unpublished report 03-819/93

  • Andersson UB (2004) Age and P–T paths of metamorphism in the Bergslagen region. Sveriges Geologiska Undersökning, Unpublished report 03-1025/97 (summary and appendices)

  • Andersson UB, Sjöström H, Högdahl K, Eklund O (2004) The Transscandinavian Igneous Belt, evolutionary model. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland Special Paper 37, pp 104–112

  • Andersson UB, Högdahl K, Sjöström H, Bergman S (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U–Pb geochronology. Geol Mag 143:679–697

    Article  Google Scholar 

  • Bergman S, Söderman J (2005a) Berggrundskartan 12H Söderfors NO, skala 1:50 000. Sveriges Geologiska Undersökning K37, Uppsala

    Google Scholar 

  • Bergman S, Söderman J (2005b) Berggrundskartan 13H Gävle SO, skala 1:50 000. Sveriges Geologiska Undersökning K35, Uppsala

    Google Scholar 

  • Bergman S, Persson P-O, Delin H, Stephens MB, Bergman T (2004) Age and significance of the Hedesunda granite and related rocks, south-central Sweden. Abstracts, 26th Nordic Geological Winter Meeting. GFF 126:18–19

    Google Scholar 

  • Bergman S, Karis L, Söderman J (2005) Berggrundskartan 13H Gävle NO, skala 1:50 000. Sveriges Geologiska Undersökning K33, Uppsala

    Google Scholar 

  • Bergman S, Billström K, Persson P-O, Skiöld T, Evins P (2006a) U-Pb age evidence for repeated Palaeoproterozoic metamorphism and deformation near the Pajala shear zone in the northern Fennoscandian shield. GFF 128:7–20

    Article  Google Scholar 

  • Bergman S, Sjöström H, Högdahl K (2006b) Transpressive shear related to arc magmatism: the Paleoproterozoic Storsjön-Edsbyn Deformation Zone, central Sweden. Tectonics 25:TC1004. doi:10.1029/2005TC001815

    Article  Google Scholar 

  • Claesson S, Huhma H, Kinny PD, Williams IS (1993) Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Res 64:109–130

    Article  Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoir 32, pp 579–598

  • Delin H, Söderman J (2005) Berggrundskartan 12H Söderfors NV, skala 1:50 000. Sveriges Geologiska Undersökning K36, Uppsala

    Google Scholar 

  • Ehlers C, Lindroos A, Selonen O (1993) The late Svecofennian granite-migmatite zone of southern Finland—a belt of transpressive deformation and granite emplacement. Precambrian Res 64:295–309

    Article  Google Scholar 

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Res 153:29–45

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Page L, Andersson J (2008a) Migratory tectonic switching, western Svecofennian orogen, central Sweden: constraints from U/Pb zircon and titanite geochronology. Precambrian Res 161:250–278

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Page LM (2008b) 40Ar/39Ar hornblende geochronology from the Forsmark area in central Sweden: constraints on late Svecofennian cooling, ductile deformation and exhumation. Precambrian Res 167:303–315

    Article  Google Scholar 

  • Högdahl K, Andersson UB, Eklund O (eds) (2004) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 125 pp

  • Högdahl K, Sjöström H, Andersson UB, Ahl M (2008) Continental margin magmatism and migmatisation in the west-central Fennoscandian Shield. Lithos 102:435–459

    Article  Google Scholar 

  • Högdahl K, Sjöström H, Bergman S (2009) Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics 28:TC1003. doi:10.1029/2008TC002277

    Article  Google Scholar 

  • Högdahl K, Majka J, Sjöström H, Persson-Nilsson K, Claesson S, Konecný P (2012) Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden. Contrib Mineral Petrol 163:167–188

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds.) Zircon. Rev Mineral Geochem 53:27–62

  • Ivarsson C, Johansson Å (1995) U–Pb zircon dating of Stockholm granite at Frescati. GFF 117:67–68

    Article  Google Scholar 

  • Johansson Å, Hålenius U (2013) Palaeoproterozoic mafic intrusions along the Avesta–Östhammar belt, east-central Sweden: mineralogy, geochemistry, and magmatic evolution. Int Geol Rev 55:131–157

    Article  Google Scholar 

  • Kampmann TC, Stephens MB, Weihed P (2016) 3D modelling and sheath folding at the Falun pyritic Zn–Pb–Cu–(Au–Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden. Miner Depos. doi:10.1007/s00126-016-0638-z

    Google Scholar 

  • Kärki A, Laajoki K, Luukas J (1993) Major Palaeoproterozoic shear zones of the central Fennoscandian Shield. Precambrian Res 64:207–223

    Article  Google Scholar 

  • Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2 000 000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia

  • Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoir 32, pp 561–578

  • Lahtinen R, Huhma H, Kousa J (2002) Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data. Precambrian Res 116:81–109

    Article  Google Scholar 

  • Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian Geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier B.V, Amsterdam, pp 481–532

    Chapter  Google Scholar 

  • Lahtinen R, Garde AA, Melezhik VA (2008) Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31:20–28

    Google Scholar 

  • Lahtinen R, Korja A, Nironen M, Heikkinen P (2009) Palaeoproterozoic accretionary processes in Fennoscandia. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geological Society, London, Special Publication 318, London, pp 237–256

    Google Scholar 

  • Ludwig KR (2003) A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication 4, Berkeley

    Google Scholar 

  • Mansfeld J, Beunk FF, Barling J (2005) 1.83–1.82 Ga formation of a juvenile volcanic arc—implications from U–Pb and Sm–Nd analyses of the Oskarshamn-Jönköping Belt, southeastern Sweden. GFF 127:149-157. doi:10.1080/11035890501272149

    Article  Google Scholar 

  • Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res 21:987–993

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Mouri H, Väisänen M, Huhma H, Korsman K (2005) Sm–Nd garnet and U–Pb monazite dating of high-grade metamorphism and crustal melting in the West Uusimaa area, southern Finland. GFF 127:123–128

    Article  Google Scholar 

  • Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precambrian Res 86:21–44

    Article  Google Scholar 

  • Nyström J-O (2004) Dala volcanism, sedimentation and structural setting. In: Högdahl K, Andersson UB, Eklund O (eds) The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland Special Paper 37, pp 58–70

  • Öhlander B, Romer RL (1996) Zircon ages of granites occurring along the Central Swedish Gravity Low. GFF 118:217–225

    Article  Google Scholar 

  • Park AF (1985) Accretion tectonism in the Proterozoic Svecokarelides of the Baltic Shield. Geology 13:725–729

    Article  Google Scholar 

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Persson L, Persson P-O (1997) U-Pb datings of the Hedesunda and Åkersberga granites of south-central Sweden. GFF 119:91–95

    Article  Google Scholar 

  • Persson L, Persson P-O, Sträng M (2002) A new occurrence of orbicular granite in Stockholm. In: Bergman S (ed) Radiometric dating results 5. Sveriges Geologiska Undersökning C834, Uppsala, pp 50–57

    Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Sandegren R, Asklund B (1948) Beskrivning till kartbladet Söderfors. Sveriges Geologiska Undersökning Aa190, Stockholm

    Google Scholar 

  • Schreurs J, Westra L (1985) The thermotectonic evolution of a Proterozoic, low pressure, granulite dome, West Uusimaa, SW Finland. Contrib Mineral Petrol 93:236–250

    Article  Google Scholar 

  • Skyttä P, Mänttäri I (2008) Structural setting of late Svecofennian granites and pegmatites in Uusimaa Belt, SW Finland: age constraints and implications for crustal evolution. Precambrian Res 164:86–109

    Article  Google Scholar 

  • Skyttä P, Väisänen M, Mänttäri I (2006) Preservation of Paleoproterozoic early Svecofennian structures in the Orijärvi area, SW Finland—evidence for polyphase strain partitioning. Precambrian Res 150:153–172

    Article  Google Scholar 

  • Söderlund P, Hermansson T, Page LM, Stephens MB (2009) Biotite and muscovite 40Ar–39Ar geochronological constraints on the post-Svecofennian tectonothermal evolution, Forsmark site, central Sweden. Int J Earth Sci 98:1835–1851

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stålhös G (1969) Beskrivning till Stockholmstraktens berggrund (English summary: Solid rocks of the Stockholm region). Sveriges Geologiska Undersökning Ba24, Stockholm

    Google Scholar 

  • Stålhös G (1972) Beskrivning till berggrundskartbladen Uppsala SV och SO (English summary: Solid rocks of the Uppsala region (map-sheets Uppsala SW and SE)). Sveriges Geologiska Undersökning Af105-106, Stockholm

    Google Scholar 

  • Stephens MB, Andersson J (2015) Migmatization related to mafic underplating and intra- or back-arc spreading above a subduction boundary in a 2.0–1.8 Ga accretionary orogen, Sweden. Precambrian Res 264:235–257

    Article  Google Scholar 

  • Stephens MB, Ripa M, Lundström I, Persson L, Bergman T, Ahl M, Wahlgren C-H, Persson P-O, Wickström L (2009) Synthesis of bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Sveriges Geologiska Undersökning Ba58, Uppsala

    Google Scholar 

  • Stephens MB, Follin S, Petersson J, Isaksson H, Juhlin Ch, Simeonov A (2015) Review of the deterministic modelling of deformation zones and fracture domains at the site proposed for a spent nuclear fuel repository, Sweden, and consequences of structural anisotropy. Tectonophysics 653:68–94

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts. Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society, Special Publication 42, London, pp 313–345

    Google Scholar 

  • Sundius N (1948) Beskrivning till berggrundskarta över Stockholmstrakten. Sveriges Geologiska Undersökning Ba13, Stockholm

    Google Scholar 

  • Torvela T, Mänttäri I, Hermansson T (2008) Timing of deformation phases within the South Finland shear zone, SW Finland. Precambrian Res 160:277–298

    Article  Google Scholar 

  • Väisänen M, Mänttäri I, Kriegsman LM, Hölttä P (2000) Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos 54:63–81

    Article  Google Scholar 

  • Väisänen M, Mänttäri I, Hölttä P (2002) Svecofennian magmatic and metamorphic evolution in southwestern Finland as revealed by U–Pb zircon SIMS geochronology. Precambrian Res 116:111–127

    Article  Google Scholar 

  • Väisänen M, Eklund O, Lahaye Y, O’Brien H, Fröjdö S, Högdahl K, Lammi M (2012) Intra-orogenic Svecofennian magmatism in SW Finland constrained by LA–MC–ICP–MS zircon dating and geochemistry. GFF 134:99–114

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46:291–318

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion microprobe and imaging studies. Chem Geol 160:201–224

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

Download references

Acknowledgments

Wen Zhang from Stockholm University assisted with mineral separation, and Gary Wife and Stefan Gunnarsson at the Evolution Biology Center of Uppsala University with the BSE imaging of zircon and monazite. Kerstin Lindén from the NordSIM facility at the Swedish Museum of Natural History prepared the zircon and monazite epoxy mounts, Lev Ilyinsky assisted with the analyses, and Martin Whitehouse with calculations of the raw data. The NordSIM facility is jointly financed by the Swedish Museum of Natural History, the Swedish Research Council, the Norwegian Research Council, the Consortium of Danish geoscience institutions, the Geological Survey of Finland and the University of Iceland. This is NordSIM Contribution No. 462. This project was financed by an external research and development grant from the Geological Survey of Sweden (SGU) to ÅJ. We wish to acknowledge all this help and support, as well as the stimulating discussions with and good advice on zircon geochronology from Jenny Andersson at SGU in Uppsala, thorough reviews by Bernard Bingen and Hannu Huhma, and editorial handling by Victoria Pease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åke Johansson.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, Å., Stephens, M.B. Timing of magmatism and migmatization in the 2.0–1.8 Ga accretionary Svecokarelian orogen, south-central Sweden. Int J Earth Sci (Geol Rundsch) 106, 783–810 (2017). https://doi.org/10.1007/s00531-016-1359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1359-3

Keywords