Skip to main content
Log in

Structural context of the 2015 pair of Nepal earthquakes (Mw 7.8 and Mw 7.3): an analysis based on slip distribution, aftershock growth, and static stress changes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Great Himalayan earthquakes are believed to originate on the Main Himalayan Thrust, and their ruptures lead to deformation along the Main Frontal Thrust (MFT). The rupture of the April 25, 2015 (Mw 7.8), earthquake was east-directed, with no part relayed to the MFT. The aftershock distribution, coseismic elevation change of ~1 m inferred from the InSAR image, and the spatial correspondence of the subtle surface deformations with PT2, a previously mapped out-of-sequence thrust, lead us to explore the role of structural heterogeneities in constraining the rupture progression. We used teleseismic moment inversion of P- and SH-waves, and Coulomb static stress changes to map the slip distribution, and growth of aftershock area, to understand their relation to the thrust systems. Most of the aftershocks were sourced outside the stress shadows (slip >1.65 m) of the April 25 earthquake. The May 12 (Mw 7.3) earthquake that sourced on a contiguous patch coincides with regions of increased stress change and therefore is the first known post-instrumentation example of a late, distant, and large triggered aftershock associated with any large earthquake in the Nepal Himalaya. The present study relates the slip, aftershock productivity, and triggering of unbroken stress barriers, to potential out-of-sequence thrusts, and suggests the role of stress transfer in generating large/great earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ader T, Avouac JP, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN, Rajaure S, Shrestha P, Ding L, Flouzat M (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J Geophys Res Solid Earth 117:1–16. doi:10.1029/2011JB009071

    Article  Google Scholar 

  • Adhikari LB, Gautam UP, Koirala BP, Bhattarai M, Kandel T, Gupta RM, Timsina C, Maharjan N, Maharjan K, Dahal T, Hoste-Colomer R (2015) The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake. Geophys J Int 203(3):2119–2124. doi:10.1093/gji/ggv412

    Article  Google Scholar 

  • Angster S, Fielding EJ, Wesnousky S, Pierce I, Chamlagain D, Gautam D, Upreti BN, Kumahara Y, Nakata T (2015) Field reconnaissance after the 25 April 2015 M 7.8 Gorkha Earthquake. Seismol Res Lett 86(6):1506–1513. doi:10.1785/0220150135

    Article  Google Scholar 

  • Armbruster J, Seeber L, Jacob KH (1978) The northwestern termination of the Himalayan mountain front: active tectonics from microearthquakes. J Geophys Res Solid Earth 83(B1):269–282. doi:10.1029/JB083iB01p00269

    Article  Google Scholar 

  • Armijo R, Tapponnier P, Han T (1989) Late cenozoic right-lateral strike-slip faulting in southern Tibet. J Geophys Res Solid Earth 94(B3):2787–2838. doi:10.1029/JB094iB03p02787

    Article  Google Scholar 

  • Avouac J-P, Meng L, Wei S, Wang T, Ampuero J-P (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci. doi:10.1038/NGEO2518

    Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742. doi:10.1038/414738a

    Article  Google Scholar 

  • Bettinelli P, Avouac JP, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GR (2006) Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J. Geod. 80:567–589. doi:10.1007/s00190-006-0030-3

    Article  Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan seismic hazard. Science 293:1442–1444. doi:10.1126/science.1062584

    Article  Google Scholar 

  • Burbank DW, Blythe AE, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha TP (2003) Decoupling of erosion and precipitation in the Himalayas. Nature 426:652–655. doi:10.1038/nature02187

    Article  Google Scholar 

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105(B6):13389–13407. doi:10.1029/2000JB900032

    Article  Google Scholar 

  • Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W, Wang E, Chen L (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23:1–21. doi:10.1029/2002TC001402

    Article  Google Scholar 

  • Cotton F, Campillo M, Deschamps A, Rastogi BK (1996) Rupture history and seismotectonics of the 1991 Uttarkashi, Himalaya earthquake. Tectonophysics 258(1):35–51. doi:10.1016/0040-1951(95)00154-9

    Article  Google Scholar 

  • Das S, Henry C (2003) Spatial relation between main earthquake slip and its aftershock distribution. Rev Geophys. doi:10.1029/2002RG000119

    Google Scholar 

  • De la Torre TL, Monsalve G, Sheehan AF, Sapkota S, Wu F (2007) Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys J Int 171:718–738. doi:10.1111/j.1365-246X.2007.03537.x

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN, Copeland P, Upreti BN (2001) Himalayan fold-thrust belt in western Nepal. Tectonics 20:487–509. doi:10.1029/2000TC001226

    Article  Google Scholar 

  • Elst NJ, Shaw BE (2015) Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks. Geophys Res Lett 42(14):5771–5778. doi:10.1002/2015GL064734

    Article  Google Scholar 

  • Fan W, Shearer PM (2015) Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophys Res Lett 42(14):5744–5752. doi:10.1002/2015GL064587

    Article  Google Scholar 

  • Goda K, Kiyota T, Pokhrel RM, Chiaro G, Katagiri T, Sharma K, Wilkinson S (2015) The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Front Built Environ 1:8. doi:10.3389/fbuil.2015.00008

    Google Scholar 

  • Gomberg J, Beeler NM, Blanpied ML, Bodin P (1998) Earthquake triggering by transient and static deformations. J Geophys Res 103(B10):24–411. doi:10.1029/98JB01125

    Article  Google Scholar 

  • Grandin R, Vallée M, Satriano C, Lacassin R, Klinger Y, Simoes M, Bollinger L (2015) Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): insights into Himalayan megathrust segmentation. Geophys Res Lett 42(20):8373–8382. doi:10.1002/2015GL066044

    Article  Google Scholar 

  • Hayes GP, Briggs RW, Barnhart WD, Yeck WL, McNamara DE, Wald DJ, Nealy JL, Benz HM, Gold RD, Jaiswal KS, Marano K (2015) Rapid characterization of the 2015 Mw 7.8 Gorkha, Nepal, earthquake sequence and its seismotectonic context. Seismol Res Lett 86(6):1557–1567. doi:10.1785/0220150145

    Article  Google Scholar 

  • Henry C, Das S (2001) Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys J Int 147:272–293. doi:10.1046/j.1365-246X.2001.00522.x

    Article  Google Scholar 

  • Herman F, Copeland P, Avouac JP, Bollinger L, Mahéo G, Le Fort P, Rai S, Foster D, Pêcher A, Stüwe K, Henry P (2010) Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J Geophys Res Solid Earth (1978–2012). doi:10.1029/2008JB006126

    Google Scholar 

  • Hodges KV (2006) A synthesis of the channel flow-extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. Geol Soc Lond Spec Publ 268(1):71–90. doi:10.1144/GSL.SP.2006.268.01.04

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15(6):1264–1291. doi:10.1029/96TC01791

    Article  Google Scholar 

  • Hodges KV, Hurtado JM, Whipple KX (2001) Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20:799–809. doi:10.1029/2001TC001281

    Article  Google Scholar 

  • Hodges KV, Wobus C, Ruhl K, Schildgen T, Whipple K (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet Sci Lett 220:379–389. doi:10.1016/S0012-821X(04)00063-9

    Article  Google Scholar 

  • Hollister LS, Grujic D (2006) Pulsed channel flow in Bhutan; channel flow, ductile extrusion and exhumation in continental collision zones. Geol Soc Spec Publ 268:415–423. doi:10.1144/GSL.SP.2006.268.01.19

    Article  Google Scholar 

  • Hough SE, Roger B (2008) Site response of the Ganges basin inferred from re-evaluated macroseismic observations from the 1897 Shillong, 1905 Kangra, and 1934 Nepal earthquakes. J Earth Syst Sci 117(2):773–782. doi:10.1007/s12040-008-0068-0

    Article  Google Scholar 

  • Hussain A, Yeats RS (2009) Geological setting of the 8 October 2005 Kashmir earthquake. J Seismol 13(3):315–325. doi:10.1007/s10950-008-9101-7

    Article  Google Scholar 

  • Kaneda H, Nakata T, Tsutsumi H, Kondo H, Sugito N, Awata Y, Akhtar SS, Majid A, Khattak W, Awan AA, Yeats RS, Hussain A, Ashraf M, Wesnousky SG, Kausar AB (2008) Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bull Seismol Soc Am 98(2):521–557. doi:10.1785/0120070073

    Article  Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquakes along the Himalayan plate boundary. Tectonophysics 38:79–92. doi:10.1016/0040-1951(87)90067-9

    Article  Google Scholar 

  • Kikuchi M, Kanamori H (1991) Inversion of complex body waves-II. Bull Seismol Soc Am 81:2335–2350

    Google Scholar 

  • Kikuchi M, Kanamori H (2003) Note on teleseismic body-wave inversion program, Earthquake Research Institute, Tokyo University, Japan. Online at http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI

  • Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105:5735. doi:10.1029/1999JB900292

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275(1):44

    Google Scholar 

  • Lindsey EO, Natsuaki R, Xu X, Shimada M, Hashimoto M, Melgar D, Sandwell DT (2015) Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys Res Lett 42(16):6655–6661. doi:10.1002/2015GL065385

    Article  Google Scholar 

  • Martin SS, Hough SE, Hung C (2015) Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data. Seismol Res Lett 86(6):1524–1532. doi:10.1785/0220150138

    Article  Google Scholar 

  • Monsalve G, Sheehan A, Rowe C, Rajaure S (2008) Seismic structure of the crust and the upper mantle beneath the Himalayas: evidence for eclogitization of lower crustal rocks in the Indian plate. J Geophys Res Solid Earth 113:1–16. doi:10.1029/2007JB005424

    Article  Google Scholar 

  • Morell KD, Sandiford M, Rajendran CP, Rajendran K, Sanwal J (2015) Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere 7(3):247–256. doi:10.1130/L407.1

    Article  Google Scholar 

  • Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang BS (2009) Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325(5946):1371–1374. doi:10.1126/science.1167719

    Article  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP, Vergne J, Héritier T (1999) Seismotectonics of the Nepal Himalaya from a local seismic network. J Asian Earth Sci 17:703–712. doi:10.1016/S1367-9120(99)00034-6

    Article  Google Scholar 

  • Parameswaran RM, Natarajan T, Rajendran K, Rajendran CP, Mallick R, Wood M, Lekhak HC (2015) Seismotectonics of the April–May 2015 Nepal earthquakes: an assessment based on the aftershock patterns, surface effects and deformational characteristics. J Asian Earth Sci 111:161–174. doi:10.1016/j.jseaes.2015.07.030

    Article  Google Scholar 

  • Rajendran K, Rajendran CP, Thulasiraman N, Andrews R, Sherpa N (2011) The 18 September 2011, North Sikkim earthquake. Curr Sci 101:1475–1479

    Google Scholar 

  • Rajendran CP, John B, Rajendran K (2015) Medieval pulse of great earthquakes in the central Himalaya: viewing past activities on the frontal thrust. J Geophys Res Solid Earth. doi:10.1002/2014JB011015

    Google Scholar 

  • Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6(1):71–76. doi:10.1038/NGEO1669

    Google Scholar 

  • Seeber L, JG Armbruster (1981) Great detachment earthquakes along the Himalayan arc and along-term forecasting. In: Simpson DW, Richards PG (eds) Earthquake prediction. American Geophysical Union, pp 259–277. doi: 10.1029/ME004p0259

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92:335–367. doi:10.1016/0040-1951(83)90201-9

    Article  Google Scholar 

  • Stevens VL, Avouac JP (2015) Interseismic coupling on the main Himalayan thrust. Geophys Res Lett 42(14):5828–5837. doi:10.1002/2015GL064845

    Article  Google Scholar 

  • Wobus CW, Hodges KV, Whipple KX (2003) Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31:861–864. doi:10.1130/G19730.1

    Article  Google Scholar 

  • Wobus C, Heimsath A, Whipple K, Hodges K (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434:1008–1011. doi:10.1038/nature03499

    Article  Google Scholar 

  • Wobus C, Whipple KX, Kirby E, Snyder N, Johnson J, Spyropolou K, Crosby B, Sheehan D (2006a) Tectonics from topography: procedures, promise, and pitfalls. Geol Soc Am Spec Pap 398:55–74. doi:10.1130/2006.2398(04)

    Google Scholar 

  • Wobus CW, Whipple KX, Hodges KV (2006b) Neotectonics of the central Nepalese Himalaya: constraints from geomorphology, detrital40Ar/39Ar thermochronology, and thermal modeling. Tectonics. doi:10.1029/2005TC001935

    Google Scholar 

  • Yagi Y, Okuwaki R (2015) Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophys Res Lett 42(15):6229–6235. doi:10.1002/2015GL064995

    Article  Google Scholar 

  • Yeats RS, Lillie RJ (1991) Contemporary tectonics of the Himalayan frontal fault system. Folds, blind thrusts and the 1905 Kangra earthquake. J Struct Geol 13:227–233. doi:10.1016/0191-8141(91)90068-T

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Ministry of Earth Sciences, Government of India, through project sanction MoES/P.O. (Seismo)/I(264)/2015 and the Indian Institute of Science, Bangalore, for conducting post-earthquake surveys in Nepal. The authors thank Prof. C.P. Rajendran for discussions and review of the manuscript and Prof. M. Santosh for suggestions to improve Fig. 7. RP thanks Prof. Hiroo Kanamori for discussions on the source models during various stages. We thank the reviewers Prof. Robert Yeats and Prof. Frank Roth for the insightful comments and suggestions that helped structure this paper better. We also thank Prof. Roland Burgmann, Prof. Douglas Dreger, Dr. Ruth Harris, Dr. Nicholas van der Elst, and Prof. Thorne Lay for comments on the poster version of this work at SSA 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusala Rajendran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure fs1

Broadband station locations for teleseismic body-wave inversion for the April 25, 2015, Mw 7.8 event. (PDF 1529 kb)

Figure fs2

Broadband station locations for teleseismic body-wave inversion for the May 12, 2015, Mw 7.3 event. (PDF 1530 kb)

Figure fs3

Match between observed (thick) and synthetic (thin) waveforms for the Mw 7.8 earthquake. Top and bottom numbers on the left of each seismogram correspond to the peak amplitude in micrometers and the station azimuth respectively. (PDF 87 kb)

Figure fs4

Match between observed (thick) and synthetic (thin) waveforms for the Mw 7.3 earthquake. Top and bottom numbers on the left of each seismogram correspond to the peak amplitude in micrometers and the station azimuth respectively. (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parameswaran, R.M., Rajendran, K. Structural context of the 2015 pair of Nepal earthquakes (Mw 7.8 and Mw 7.3): an analysis based on slip distribution, aftershock growth, and static stress changes. Int J Earth Sci (Geol Rundsch) 106, 1133–1146 (2017). https://doi.org/10.1007/s00531-016-1358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1358-4

Keywords

Navigation