International Journal of Earth Sciences

, Volume 106, Issue 3, pp 1107–1121 | Cite as

Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S–70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

  • Pablo A. Salas
  • Osvaldo M. Rabbia
  • Laura B. Hernández
  • Philipp Ruprecht
Original Paper


In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe–Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.


Monogenetic volcanism Andean Southern Volcanic Zone Descabezado Grande volcanic field Olivine 



We would like to thank especially G. Bergantz for enabling a 3-month research visit to the University of Washington for P. Salas, during which significant parts of the data were produced. Hugo Neira and Daniela Astaburuaga are sincerely acknowledged for their valuable contribution in GIS support and structural discussions, respectively. P. Salas was supported during part of the project by Beca Postgrado 2015 from Universidad de Concepción. P. Ruprecht gratefully acknowledges funding from the U.S. National Science Foundation (Grants EAR-1347880 and EAR-1426820). We would like to thank Dr. Verónica Pineda for providing facilities for mineral separation at the Laboratory of Sedimentology, Universidad de Concepción, Chile. Charles Stern and Francisco Gutierrez provided helpful reviews of this manuscript.

Supplementary material

531_2016_1357_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)
531_2016_1357_MOESM2_ESM.docx (72 kb)
Supplementary material 2 (DOCX 72 kb)


  1. Acocella V (2014) Structural control on magmatism along divergent and convergent plate boundaries: overview, model, problems. Earth Sci Rev 136:226–288CrossRefGoogle Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  3. Astaburuaga D (2014) Evolución estructural del límite Mesozoico-Cenozoico de la Cordillera Principal entre los 35°30′ y 36° S, Región del Maule, Chile. Master thesis. Universidad de ChileGoogle Scholar
  4. Bonali FL, Tibaldi A, Corazzato C (2015) Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 Mw 8.8 Chile earthquake. Geophys J Int 201(3):1868–1890CrossRefGoogle Scholar
  5. Bucchi F, Lara LE, Gutiérrez F (2015) The Carrán–Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting. J Volcanol Geoth Res 308:70–81CrossRefGoogle Scholar
  6. Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1):96–113CrossRefGoogle Scholar
  7. Charrier R, Baeza O, Elgueta S, Flynn J, Gans P, Kay S, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36 SL). J South Am Earth Sci 15(1):117–139CrossRefGoogle Scholar
  8. Dungan MA, Wulff A, Thompson R (2001) Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42(3):555–626CrossRefGoogle Scholar
  9. Farías M, Comte D, Roecker S, Carrizo D, Pardo M (2011) Crustal extensional faulting triggered by the 2010 Chilean earthquake: the Pichilemu seismic sequence. Tectonics 30(6):1–11CrossRefGoogle Scholar
  10. Genareau K, Valentine GA, Moore G, Hervig RL (2010) Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, USA). Bull Volc 72(5):593–607CrossRefGoogle Scholar
  11. Giambiagi L, Tassara A, Mescua J, Tunik M, Alvarez PP, Godoy E, Tapia F (2015) Evolution of shallow and deep structures along the Maipo–Tunuyán transect (33°40′S): from the Pacific coast to the Andean foreland. Geol Soc Lond Spec Publ 399(1):63–82CrossRefGoogle Scholar
  12. Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Mineral Petrol 127(3):205–223CrossRefGoogle Scholar
  13. Higgins MD, Voos S, Vander Auwera J (2015) Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies. Contrib Miner Petrol 170(5–6):1–16Google Scholar
  14. Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54(2):93–125CrossRefGoogle Scholar
  15. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Miner Petrol 98(4):455–489CrossRefGoogle Scholar
  16. Hildreth W, Godoy E, Fierstein J, Singer B (2010) Laguna del Maule Volcanic field: eruptive history of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean range crest in central Chile. Servicio Nacional de Geología y Minería-Chile, Boletin 63:142Google Scholar
  17. Jacques J (2003) A tectonostratigraphic synthesis of the Sub-Andean basins: implications for the geotectonic segmentation of the Andean Belt. J Geol Soc 160(5):687–701CrossRefGoogle Scholar
  18. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47CrossRefGoogle Scholar
  19. Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-ray Anal 41(843867):1988Google Scholar
  20. Johnson E, Wallace P, Delgado Granados H, Kent A (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth Planet Sci Lett 269:478–487CrossRefGoogle Scholar
  21. Keiding JK, Trumbull RB, Veksler IV, Jerram DA (2011) On the significance of ultra-magnesian olivines in basaltic rocks. Geology 39(12):1095–1098CrossRefGoogle Scholar
  22. Larrea P, França Z, Lago M, Widom E, Galé C, Ubide T (2013) Magmatic processes and the role of antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal). J Petrol 54(4):769–793CrossRefGoogle Scholar
  23. Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Miner Petrol 136(1–2):63–80CrossRefGoogle Scholar
  24. López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46S). Andean Geol 22(2):219–234Google Scholar
  25. Lupi M, Miller S (2014) Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes. Solid Earth 5(1):13CrossRefGoogle Scholar
  26. Maloney KT, Clarke GL, Klepeis KA, Quevedo L (2013) The Late Jurassic to present evolution of the Andean margin: drivers and the geological record. Tectonics 32:1049–1065CrossRefGoogle Scholar
  27. Mescua JF, Giambiagi LB, Tassara A, Gimenez M, Ramos VA (2014) Influence of pre-Andean history over Cenozoic foreland deformation: structural styles in the Malargüe fold-and-thrust belt at 35°S, Andes of Argentina. Geosphere 10(3):585–609CrossRefGoogle Scholar
  28. Morgado E, Parada MA, Contreras C, Castruccio A, Gutiérrez F, McGee LE (2015) Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. J Volcanol Geoth Res 306:1–16CrossRefGoogle Scholar
  29. Muñoz J, Niemeyer H (1984) Hoja 64 Laguna del Maule, Regiones del Maule y Bio-Bio. Carta Geológica de Chile, Servicio Nacional de Geologıa y Minerıa de Chile, scale, 1:250.000Google Scholar
  30. Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J Volcanol Geoth Res 2(1):1–16CrossRefGoogle Scholar
  31. Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104(8):2131–2146CrossRefGoogle Scholar
  32. Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475(7356):373–376CrossRefGoogle Scholar
  33. Piquer J, Castelli JC, Charrier R, Yáñez G (2010) El Cenozoico del alto río Teno, Cordillera Principal, Chile central: estratigrafía, plutonismo y su relación con estructuras profundas. Andean Geol 37(1):32–53Google Scholar
  34. Piquer J, Skarmeta J, Cooke DR (2015) Structural evolution of the Rio Blanco-Los Bronces District, Andes of Central Chile: controls on stratigraphy, magmatism, and mineralization. Econ Geol 110(8):1995–2023CrossRefGoogle Scholar
  35. Ramos V (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. Geol Soc Am Mem 204:31–65Google Scholar
  36. Roberge J, Guilbaud MN, Mercer CN, Reyes-Luna PC (2015) Insight into monogenetic eruption processes at Pelagatos volcano, Sierra Chichinautzin, Mexico: a combined melt inclusion and physical volcanology study. Geol Soc Lond Spec Publ 410(1):179–198CrossRefGoogle Scholar
  37. Rodríguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi volcano (36.2° S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48(11):2033–2061CrossRefGoogle Scholar
  38. Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500(7460):68–72CrossRefGoogle Scholar
  39. Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840CrossRefGoogle Scholar
  40. Salas P, Rabbia O, Ruprecht P, Bergantz G (2009) Geoquímica de los centros eruptivos menores y escoria máfica de la erupción de 1932 del volcán Quizapu, Región del Maule, Chile. XII Congreso Geológico Chileno, Santiago, S8_027, 1–3Google Scholar
  41. Salas P, Rabbia OM, Hernández L (2014) High magnesium olivine in basaltic andesites from minor vents of Quizapu volcano, Southern Volcanic Zone, Chile. XIX Congreso Geológico Argentino, Córdoba S24:1–4Google Scholar
  42. Salas P, Rabbia OM, Hernández L (2015) Compositional evolution of Los Hornitos mafic cones: insights from whole rock chemistry and high-resolution EMPA profiles in high-forsterite olivine phenocrysts. XIV Congreso Geológico Chileno, At1St3_026Google Scholar
  43. Sellés D (2006) Stratigraphy, Petrology, and Geochemistry of Nevado de Longaví Volcano, Chilean Andes (36.2°S). Dissertation, University of GeneveGoogle Scholar
  44. Sellés D, Rodriguez A, Dungan MA, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví Volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Revista geológica de Chile 31(2):293–315CrossRefGoogle Scholar
  45. Singer B, Hildreth W, Vincze Y (2000) 40Ar/39Ar evidence for early deglaciation of the central Chilean Andes. Geophys Res Lett 27(11):1663–1666CrossRefGoogle Scholar
  46. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166CrossRefGoogle Scholar
  47. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile 31(2):161–206CrossRefGoogle Scholar
  48. Straub S, Gomez-Tuena A, Stuart F, Zellmer G, Espinasa-Perena R, Cai Y, Iizuka Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303(3):337–347CrossRefGoogle Scholar
  49. Takada Y, Fukushima Y (2013) Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat Geosci 6(8):637–641CrossRefGoogle Scholar
  50. Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys J Int 189(1):161–168CrossRefGoogle Scholar
  51. Tormey D, Frey F, López-Escobar L (1995) Geochemistry of the active Azufre—Planchon—Peteroa volcanic complex, Chile (35° 15′ S): evidence for multiple sources and processes in a cordilleran arc magmatic system. J Petrol 36(2):265–298CrossRefGoogle Scholar
  52. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes-processes and problems. J Volcanol Geoth Res 177(4):857–873CrossRefGoogle Scholar
  53. Vergara M, Muñoz J (1982) La Formación Cola de Zorro en la alta cordillera andina chilena (36°–39° Lat. S), sus características petrográficas y petrológicas: una revisión. Andean Geol 17Google Scholar
  54. Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geoth Res 205(3):114–129CrossRefGoogle Scholar
  55. Weaver SL, Wallace PJ, Johnston AD (2011) A comparative study of continental vs. intraoceanic arc mantle melting: experimentally determined phase relations of hydrous primitive melts. Earth Planet Sci Lett 308(1):97–106CrossRefGoogle Scholar
  56. Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara LE (2014) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43S). Int J Earth Sci 103(7):1945–1962CrossRefGoogle Scholar
  57. Wolff A (2005) Age and petrogenesis of lavas from the Casitas shield, Descabezado Grande-Cerro Azul volcanic complex, Chilean Andes. In: 2005 Salt Lake City annual meetingGoogle Scholar
  58. Wolff A (2008) Chemical stratigraphy of lavas from the Casitas Shield, Descabezado Grande-cerro Azul volcanic complex, Chilean Andes. In: Goldschmidt conferenceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo A. Salas
    • 1
  • Osvaldo M. Rabbia
    • 2
  • Laura B. Hernández
    • 2
  • Philipp Ruprecht
    • 3
  1. 1.Departamento de Ciencias de la TierraUniversidad de ConcepciónConcepciónChile
  2. 2.Instituto de Geología Económica Aplicada GEAUniversidad de ConcepciónConcepciónChile
  3. 3.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA

Personalised recommendations