Advertisement

International Journal of Earth Sciences

, Volume 106, Issue 3, pp 1023–1055 | Cite as

Multidisciplinary approach to constrain kinematics of fault zones at shallow depths: a case study from the Cameros–Demanda thrust (North Spain)

  • A. M. Casas-Sainz
  • T. Román-Berdiel
  • B. Oliva-Urcia
  • C. García-Lasanta
  • J. J. Villalaín
  • L. Aldega
  • S. Corrado
  • C. Caricchi
  • C. Invernizzi
  • M. C. Osácar
Original Paper

Abstract

Thrusting at shallow depths often precludes analysis by means of structural indicators effective in other geological contexts (e.g., mylonites, sheath folds, shear bands). In this paper, a combination of techniques (including structural analysis, magnetic methods, as anisotropy of magnetic susceptibility and paleomagnetism, and paleothermometry) is used to define thrusting conditions, deformation, and transport directions in the Cameros–Demanda thrust (North Spain). Three outcrops were analyzed along this intraplate, large-scale major structure having 150 km of outcropping length, 30 km of maximum horizontal displacement, and 5 km of vertical throw. Results obtained by means of the different techniques are compared with data derived from cross sections and stratigraphic analysis. Mixed-layer illite–smectite and vitrinite reflectance indicating deep diagenetic conditions and mature stage of hydrocarbon generation suggests shallow depths during deformation, thus confirming that the protolith for most of the fault rocks is the footwall of the main thrust. Kinematic indicators (foliation, S/C structures, and slickenside striations) indicate altogether a dominant NNW movement of the hanging wall in the western zone and NE in the eastern zone of the thrust, thus implying strain partitioning between different branches of the main thrust. The study of AMS in fault rocks (nearly 400 samples of fault gouge, breccia, and microbreccia) indicates that the strike of magnetic foliation is oblique to the transport direction and that the magnetic lineation parallelizes the projection of the transport direction onto the k max/k int plane in sites with strong shear deformation. Paleomagnetism applied to fault rocks indicates the existence of remagnetizations linked to thrusting, in spite of the shallow depth for deformation, and a strong deformation or scattering of the magnetic remanence vectors in the fault zone. The application of the described techniques and consistency of results indicate that the proposed multidisciplinary approach is useful when dealing with thrusts at shallow crustal levels.

Keywords

Intraplate thrusting Fault rock Cameros–Demanda thrust Transport direction Magnetic techniques Paleothermometry 

Notes

Acknowledgments

The authors thank Sylvia Gracia for her help in measuring with the KLY3S susceptibility meter, and Manuel Tricas for thin-section preparation. The authors also acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza (Servicio de Preparación de Rocas y Materiales Duros, and Servicio de Líquidos Criogénicos). This study has been financed by the Research Project UZ2012-CIE-11 of the University of Zaragoza and the Research Projects CGL2013-42670-P and CGL2012-38481 of the MINECO (Ministerio de Economía y Competitividad of Spain). The authors acknowledge the careful and constructive revisions from Manuel Sintubin and Jean Luc Bouchez, who helped to strongly improve a former version of the manuscript.

References

  1. Aldega L, Corrado S, Grasso M, Maniscalco R (2007) Correlation of diagenetic data from organic and inorganic studies in the Apenninic-Maghrebian fold-and-thrust belt: a case study from Eastern Sicily. J Geol 115:335–353CrossRefGoogle Scholar
  2. Aldega L, Corrado S, Di Paolo L, Somma R, Maniscaldo R, Balestrieri ML (2011) Shallow burial and exhumation of the Peloritani Mountains (NE Sicily, Italy): insight from paleothermal and structural indicators. Geol Soc Am Bull 123:132–149CrossRefGoogle Scholar
  3. Allmendinger RW, Cardozo NC, Fisher D (2013) Structural geology algorithms: vectors & tensors. Cambridge University Press, CambridgeGoogle Scholar
  4. Alonso JL (1987) Sequences of thrusts and displacement transfer in the superposed duplexes of the Esla Nappe Region (Cantabrian Zone, NW Spain). J Struct Geol 9(8):969–983CrossRefGoogle Scholar
  5. Alsop GI (2009) Unravelling patterns of folding in high-strain zones. Trab Geol 29:74–77Google Scholar
  6. Aranguren A, Cuevas J, Tubía JM (1996) Composite magnetic fabrics from S–C mylonites. J Struct Geol 18:863–869CrossRefGoogle Scholar
  7. Avouac JP, Tapponnier P, Bai M, You H, Wang G (1993) Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J Geophys Res Solid Earth 98(4):6755–6804 (1978–2012) CrossRefGoogle Scholar
  8. Bailey RC, Halls H (1978) The method of converging remagnetization circles: extension to in-clude stable endpoints and error analysis. EOS Trans AGU 59(12):1037Google Scholar
  9. Balsamo F, Aldega L, De Paola N, Faoro I, Storti F (2014) The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology 42:435–438CrossRefGoogle Scholar
  10. Barrier L, Nalpas T, Gapais D, Proust JN, Casas A, Bourquin S (2002) Influence of syntectonic sedimentation on thrust geometry. Field examples from the Iberian Chain (Spain) and analogue modelling. Sed Geol 146(1–2):91–104CrossRefGoogle Scholar
  11. Bigi S (2006) An example of inversion in a brittle shear zone. J Struct Geol 28(3):431–443CrossRefGoogle Scholar
  12. Bigi S, Milli S, Corrado S, Casero P, Aldega L, Botti F, Moscatelli M, Stanzione O, Falcini F, Marini M, Cannata D (2009) Stratigraphy, structural setting and burial history of the Messinian Laga Basin in the context of Apennine foreland basin system. J Mediterr Earth Sci 1:61–84Google Scholar
  13. Borradaile GJ (1997) Deformation and paleomagnetism. Surv Geophys 18(4):405–436CrossRefGoogle Scholar
  14. Bustin RM, Barnes MA, Barnes WC (1990) Determining levels of organic diagenesis in sediments and fossil fuels. In: Mcllreath IA, Morrow DW (eds) Diagenesis. Geological Association of Canada, Toronto, pp 205–226Google Scholar
  15. Calamita F, Satolli S, Turtu A (2012) Analysis of thrust shear zones in curve-shaped belts; deformation mode and timing of the Olevano-Antrodoco-Sibillini thrust (Central/Northern Apennines of Italy). J Struct Geol 44:179–187CrossRefGoogle Scholar
  16. Capote R, Muñoz JA, Simón JL, Liesa CL, Arlegui LE (2002) Alpine tectonics I: the Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, Bath, pp 367–400Google Scholar
  17. Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet. Comput Geosci 51:193–205CrossRefGoogle Scholar
  18. Caricchi C, Aldega L, Barchi MR, Corrado S, Grigo D, Mirabella F, Zattin M (2015) Exhumation patterns along shallow low-angle normal faults: an example from the Altotiberina active fault system (Northern Apennines, Italy). Terra Nova 27(4):312–321CrossRefGoogle Scholar
  19. Casas AM, Faccenna C (2001) Tertiary compressional deformation of the Iberian plate. Terra Nova 13:281–288CrossRefGoogle Scholar
  20. Casas AM, Simón JL, Seron FJ (1992) Stress deflection in a tectonic compressional field; a model for the northwestern Iberian Chain, Spain. J Geophys Res 97(B5):7183–7192CrossRefGoogle Scholar
  21. Casas AM, Villalaín JJ, Soto R, Gil A, del Río P, Fernández G (2009) Multidisciplinary approach to an extensional syncline model for the Cameros Basin (N Spain). Tectonophysics 470:3–20CrossRefGoogle Scholar
  22. Casas-Sainz AM (1992) El frente norte de las Sierras de Cameros: estructuras cabalgantes y campo de esfuerzos. Tesis doctoral, Universidad de Zaragoza. Instituto de Estudios Riojanos, Zubía 4, p 220Google Scholar
  23. Casas-Sainz AM (1993) Oblique tectonic inversion and basement thrusting in the Cameros Massif (Northern Spain). Geodin Acta 6–3:202–216CrossRefGoogle Scholar
  24. Casas-Sainz A, Gil-Imaz A (1998) Extensional subsidence, contractional folding and thrust inversion of the Eastern Cameros Massif, northern Spain. Geol Rundsch 86:802–818CrossRefGoogle Scholar
  25. Casas-Sainz AM, Simón-Gómez JL (1992) Stress-field and thrust kinematics—a model for the tectonic inversion of the Cameros Massif (Spain). J Struct Geol 14(5):521–530CrossRefGoogle Scholar
  26. Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Trav Géophys XXVII:20–21Google Scholar
  27. Chadima M, Hrouda F (2009) Cureval 8.0: thermomagnetic curve browser for windows. Agico, Inc, BrnoGoogle Scholar
  28. Chadima M, Jelinek V (2009) Anisoft 4.2: anisotropy data browser for windows. Agico, Inc, BrnoGoogle Scholar
  29. Cogné JP, Perroud H (1985) Strain removal applied to paleomagnetic directions in an orogenic belt: the Permian red slates of the Alpes Maritimes, France. Earth Planet Sci Lett 72(1):125–140CrossRefGoogle Scholar
  30. Corrado S, Invernizzi C, Aldega L, D’Errico M, Di Leo P, Zattin M (2010) Testing the validity of organic and inorganic thermal indicators in different tectonic settings from continental subduction to collision: the case history of the Calabria–Lucania border (southern Apennines, Italy). J Geol Soc 167:985–999CrossRefGoogle Scholar
  31. Cortés Gracia AL, Casas Sainz AM (1997) Pliegues flexurales asociados al cabalgamiento de la Sierra de la Demanda en el Cerro Peñalba (La Rioja). Geogaceta 21:85–88Google Scholar
  32. Coubal M, Adamovic J, Malek J, Prouza V (2014) Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif. J Geosci 59(3):183–208CrossRefGoogle Scholar
  33. De Graciansky PC, Dardeau G, Lemoine M, Tricart P (1989) The inverted margin of the French Alps and foreland basin inversion. Geol Soc Lond Spec Publ 44(1):87–104CrossRefGoogle Scholar
  34. De Vicente G (2004) Estructura alpina del Antepaís Ibérico. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 587–634Google Scholar
  35. Debacker TN, Robion P, Sintubin M (2004) The anisotropy of magnetic susceptibility (AMS) in low-grade, cleaved pelitic rocks: influence of cleavage/bedding angle and type and relative orientation of magnetic carriers. Geol Soc Lond Spec Publ 238(1):77–107CrossRefGoogle Scholar
  36. Debacker TN, Hirt AM, Sintubin M, Robion P (2009) Differences between magnetic and mineral fabrics in low-grade, cleaved siliciclastic pelites; a case study from the Anglo-Brabant deformation belt (Belgium). Tectonophysics 466(1–2):32–46CrossRefGoogle Scholar
  37. Debacker TN, Sintubin M, Robion P (2010) On the use of magnetic techniques for stratigraphic purposes: examples from the Lower Palaeozoic Anglo-Brabant Deformation Belt (Belgium). Geol Belgica 13:333–350Google Scholar
  38. Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Fundamentals and frontiers. In: Edwards D (ed) Cambridge studies in magnetism. Cambridge University Press, Cambridge, p 253Google Scholar
  39. Durand B (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Durand B (ed) Kerogen: insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 13–33Google Scholar
  40. Elliot D (1976) The energy balance and deformation mechanisms of thrust sheets. Philos Trans R Soc 283:289–312CrossRefGoogle Scholar
  41. Erslev EA (1986) Basement balancing of Rocky Mountain foreland uplifts. Geology 14(3):259–262CrossRefGoogle Scholar
  42. Fauconnier J, Stünitz H, Rosenberg C, Labrousse L, Jolivet L (2014) Étude expérimentale de la fusion partielle sur la rhéologie et la microstructure de la croûte continentale. RST Pau Résum 3(8):26Google Scholar
  43. Fernández-Lozano J (2012) Cenozoic deformation of Iberia: a model for intraplate mountain building and basin development based on analogue modelling. Ph.D. thesis, Utrecht Studies in Earth Sciences 013, p 173Google Scholar
  44. Fernández-Lozano J, Sokoutis D, Willingshofer E, Cloetingh S, De Vicente G (2011) Cenozoic deformation of Iberia; a model for intraplate mountain building and basin development based on analogue modeling. Tectonics 30(1):TC1001CrossRefGoogle Scholar
  45. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305CrossRefGoogle Scholar
  46. García-Lasanta C, Oliva-Urcia B, Román-Berdiel T, Casas AM, Pérez-Lorente F (2013) Development of magnetic fabric in sedimentary rocks: insights from early compactional structures (ECS). Geophys J Int 194(1):182–199CrossRefGoogle Scholar
  47. Grasemann B, Fritz H, Vannay J-C (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. J Struct Geol 21:837–853CrossRefGoogle Scholar
  48. Guimerà J, Alonso I, Mas J R (1995) Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros basin (N Spain). In: Buchanan JG, Buchanan PG (eds) Basin inversion. Geol Soc Special Publication 88, pp 433–453Google Scholar
  49. Guimerà J, Más R, Alonso A (2004) Intraplate deformation in the NW Iberian Chain: mesozoic extension and contractional inversion. J Geol Soc Lond 16:291–303CrossRefGoogle Scholar
  50. Haerinck T, Wenk HR, Debacker TN, Sintubin M (2015) Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric. J Struct Geol 71:125–135CrossRefGoogle Scholar
  51. Haines SH, van der Pluijm BA (2012) Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. J Struct Geol 43:2–32CrossRefGoogle Scholar
  52. Hirono T, Lin W, Yeh EC, Soh W, Hashimoto Y, Sone H, Matsubayashi O, Aoike K, Ito H, Kinoshita M, Murayama M, Song SR, Ma K-F, Hung J-H, Wang C-Y, Tsai Y-B (2006) High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP. Geophys Res Lett 33(15):4,L15303CrossRefGoogle Scholar
  53. Hirt AM, Gehring A (1991) Thermal alteration of the magnetic mineralogy in ferruginous rocks. J Geophys Res 96:9947–9954CrossRefGoogle Scholar
  54. Hrouda F, Jélinek V, Zapletal K (1997) Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys J Int 129:715–719CrossRefGoogle Scholar
  55. Jacob H, Hiltmann W (1985) Disperse bitumen solids as an indicator for migration and maturity within the scope of prospecting for petroleum and natural gas—a model for NW Germany: DGMK. Forschungsbericht 267:1–54Google Scholar
  56. Jagodzinski H (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgen Interferenzen. Acta Crystallogr A 2:201–207CrossRefGoogle Scholar
  57. Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika, Brno, pp 1–88Google Scholar
  58. Jelinek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geoph Geod 22:50–62CrossRefGoogle Scholar
  59. Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–70CrossRefGoogle Scholar
  60. Jones BF, Galan E (1988) Palygorskite–sepiolite. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Rev in Min 19, Min Soc Amer, Washington, p 698Google Scholar
  61. Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astr Soc 62:669–718CrossRefGoogle Scholar
  62. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36(11):839–842CrossRefGoogle Scholar
  63. Kligfield R, Lowrie W, Hirt A, Siddans AWB (1983) Effect of progressive deformation on remanent magnetization of Permian redbeds from the Alpes Maritimes (France). Tectonophysics 98(1):59–85CrossRefGoogle Scholar
  64. Lattard D, Engelmann R, Kontny A, Suerzapf U (2006) Curie temperatures of synthetic titanomagnetites in the Fe–Ti–O system: effects of composition, crystal chemistry, and thermomagnetic methods. J Geophys Res 111:B12S28. doi: 10.1029/2006JB004591 CrossRefGoogle Scholar
  65. Liesa CL, Simón JL (2009) Evolution of intraplate stress fields under multiple remote compressions: the case of the Iberian Chain (NE Spain). Tectonophysics 474:144–159CrossRefGoogle Scholar
  66. Lister GS, Snoke AW (1984) S–C mylonites. J Struct Geol 6:617–638CrossRefGoogle Scholar
  67. Lowrie W, Hirt AM, Kligfield R (1986) Effects of tectonic deformation on the remanent magnetization of rocks. Tectonics 5(5):713–722CrossRefGoogle Scholar
  68. Lüneburg CM, Lampert SA, Hermann I, Lebit D, Hirt AM, Casey M, Lowrie W (1999) Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics 307:51–74CrossRefGoogle Scholar
  69. Martín-Hernández F, Ferré EC (2007) Separation of paramagnetic and ferromagnetic anisotropies: a review. J Geophys Res Solid Earth 112(B3):B03105CrossRefGoogle Scholar
  70. Mas JR, Alonso A, Guimera J (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria). Rev Soc Geol Esp 6(3–4):129–144Google Scholar
  71. Mata MP, Casas AM, Canals A, Gil A, Pocovi A (2001) Thermal history during Mesozoic extension and tertiary uplift in the Cameros Basin, Northern Spain. Basin Res 13:91–111CrossRefGoogle Scholar
  72. Mata MP, Villalaín JJ, Casas AM (2006) Mineralogía magnética en rocas mesozoicas remagnetizadas de la Cordillera Ibérica (Sinclinal de Villavelayo-Sierra de la Demanda). MACLA (ISSN:1885-7264) 6, pp 301–303Google Scholar
  73. Mertainen S, Karell F (2012) Palaeomagnetic and AMS studies on Satulinmäkiand Koijärvi fault and shear zones. Geol Surv Finland Spec Pap 52:195–226Google Scholar
  74. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, OxfordGoogle Scholar
  75. Moreno E, Homberg C, Schnyder J, Person A, du Peloux A, Dock P (2014) Fault imprint in clay units: magnetic fabric, structural and mineralogical signature. EGU General Assembly 2014. Geophysical Research Abstracts 16, EGU2014-15479Google Scholar
  76. Muñoz JA, Coney P, McClay K, Evenchick C (1997) Discussion on syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. J Geol Soc Lond 154:361–365CrossRefGoogle Scholar
  77. Muñoz-Jiménez A, Casas-Sainz AM (1997) The Rioja Trough (N Spain): tectosedimentary evolution of a symmetric foreland basin. Basin Res 9–1:65–85CrossRefGoogle Scholar
  78. Nieto F, Mata MP, Bauluz B, Giorgietti G, Árkai P, Peacor DR (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Miner 40:93–104CrossRefGoogle Scholar
  79. Oliva-Urcia B, Pueyo EL (2007) Rotational basement kinematics deduced from remagnetized cover rocks (Internal Sierras, southwestern Pyrenees). Tectonics 26:TC4014CrossRefGoogle Scholar
  80. Oliva-Urcia B, Pueyo EL, Larrasoaña JC (2008) Magnetic reorientation induced by pressure solution: a potential mechanism for orogenic-scale remagnetizations. Earth Planet Sci Lett 265:525–534CrossRefGoogle Scholar
  81. Oliva-Urcia B, Larrasoaña JC, Pueyo EL, Gil A, Mata P, Parés JM, Schleicher AM, Pueyo Ó (2009) Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). J Struct Geol 31(2):163–176CrossRefGoogle Scholar
  82. Oliva-Urcia B, Casas AM, Pueyo EL, Román-Berdiel T, Geissman JW (2010a) Paleomagnetic evidence for dextral strike-slip motion in the Pyrenees during alpine convergence (Mauléon basin, France). Tectonophysics 494(3):165–179CrossRefGoogle Scholar
  83. Oliva-Urcia B, Casas AM, Soto R, Villalaín JJ, Kodama K (2010b) A transtensional basin model for the Organyà basin (central southern Pyrenees) based on magnetic fabric and brittle structures. Geophys J Int 184(1):111–130CrossRefGoogle Scholar
  84. Oliva-Urcia B, Román-Berdiel T, Casas AM, Pueyo EL, Osácar C (2010c) Tertiary compressional overprint on Aptian–Albian extensional magnetic fabrics, North Pyrenean Zone. J Struct Geol 32:362–376CrossRefGoogle Scholar
  85. Omodeo-Salé S, Salas R, Guimerà J, Ondrak R, Mas R, Arribas J, Suárez-Ruiz I, Martinez L (2015) Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-central Spain) affected by very low- to low-grade metamorphism. Basin Research. doi: 10.1111/bre.12142 Google Scholar
  86. Ono T, Hosomi Y, Arai H, Takagi H (2010) Comparison of petrofabrics with composite magnetic fabrics of S–C mylonite in paramagnetic granite. J Struct Geol 32(1):2–14CrossRefGoogle Scholar
  87. Parés JM, Van der Pluijm BA (2002) Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT-AMS). Geophys Res Lett. doi: 10.1029/2002GL015459 Google Scholar
  88. Parés JM, Van Der Pluijm BA, Dinarès-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees northern Spain). Tectonophysics 307:1–14CrossRefGoogle Scholar
  89. Pérez-Estaún A, Bastida F, Alonso JL, Marquínez J, Aller J, Alvarez-Marrón J, Marcos A, Pulgar JA (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7(3):517–537CrossRefGoogle Scholar
  90. Petrovsky E, Kapicka A (2006) On determination of the Curie point from thermomagnetic curves. J Geophys Res 11:B12S27. doi: 10.1029/2006JB004507 Google Scholar
  91. Pichot T, Nalpas T (2009) Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modelling. Tectonophysics 473:466–475CrossRefGoogle Scholar
  92. Pollastro RM (1990) The illite/smectite geothermometer-concepts, methodology and application to basin history and hydrocarbon generation. In: Nuccio BF, Barker CE (eds) Application of thermal maturity studies to energy exploration. Society of Economic Paleontologists and Mineralogists, Rocky Mountains Section, pp 1–18Google Scholar
  93. Pomella H (2014) Magnetic fabic of brittle fault rocks. EGU General Assembly 2014. Geophysical Research Abstracts 16, EGU2014-12505Google Scholar
  94. Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill Companies, New YorkGoogle Scholar
  95. Ramsay JG (1981) Tectonics of the Helvetic nappes. Geol Soc Lond Spec Publ 9(1):293–309CrossRefGoogle Scholar
  96. Ramsay JG, Huber MI (1987) The techniques of modern structural geology. Vol 2: folds and fractures. Academic, London, pp 309–700Google Scholar
  97. Ramsay JG, Casey M, Kligfield R (1983) Role of shear in development of the Helvetic fold-thrust belt of Switzerland. Geology 11(8):439–442CrossRefGoogle Scholar
  98. Ritcher C, Van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123CrossRefGoogle Scholar
  99. Schleicher AM, van der Pluijm BA, Warr LN (2012) Chlorite-smectite clay minerals and fault behavior: new evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere 4(3):209–220CrossRefGoogle Scholar
  100. Seillé H, Salas R, Pous J, Guimerà J, Gallart J, Torne M, Romero-Ruiz I, Diaz J, Ruiz M, Carbonell R, Mas R (2015) Crustal structure of an intraplate thrust belt: the Iberian Chain revealed by wide-angle seismic, magnetotelluric soundings and gravity data. Tectonophysics 663:339–353CrossRefGoogle Scholar
  101. Simón JL, Liesa CL (2011) Incremental slip history of a thrust; diverse transport directions and internal folding of the Utrillas thrust sheet (NE Iberian chain, Spain). Geol Soc Lond Spec Publ 349:77–97CrossRefGoogle Scholar
  102. Smithson SB, Brewer J, Kaufman S, Oliver J, Hurich C (1978) Nature of the Wind River thrust, Wyoming, from COCORP deep-reflection data and from gravity data. Geology 6(11):648–652CrossRefGoogle Scholar
  103. Snoke AW, Tullis J, Todd VR (eds) (1998) Fault-related rocks: a photographic atlas. Princeton University Press, PrincetonGoogle Scholar
  104. Solum JG, van der Pluijm BA (2009) Quantification of fabrics in clay gouge from the Carbonera fault, Sapin and implications for fault behavior. Tectonophysics 475:554–562CrossRefGoogle Scholar
  105. Stach E, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmuller R (1982) Stach’s textbook of coal petrology. Gebrüder Borntraeger, BerlinGoogle Scholar
  106. Steidtmann JR, Middleton LT (1991) Fault chronology and uplift history of the southern Wind River Range, Wyoming: implications for Laramide and post-Laramide deformation in the Rocky Mountain foreland. Geol Soc Am Bull 103(4):472–485CrossRefGoogle Scholar
  107. Trincal V, Charpentier D, Buatier MD, Grobety B, Lacroix B, Labaume P, Sizun J-P (2014) Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Mar Pet Geol 55:160–175CrossRefGoogle Scholar
  108. Villalaín JJ, Fernández-González G, Casas AM, Gil-Imaz A (2003) Evidence of a Cretaceous remagnetization in the Cameros Basin (North Spain). Implications for basin geometry. Tectonophysics 377:101–117CrossRefGoogle Scholar
  109. Vrolijk P, van der Pluijm BA (1999) Clay gouge. J Struct Geol 21(8):1039–1048CrossRefGoogle Scholar
  110. Yonkee WA, Parry WT, Bruhn RL, Cashman PH (1989) Thermal models of thrust faulting: constraints from fluid-inclusion observations, Willard thrust sheet, Idaho-Utah-Wyoming thrust belt. Geol Soc Am Bull 101:304–313CrossRefGoogle Scholar
  111. Zheng Y, Davis GA, Wang G, Darby BJ, Hua Y (1998) Major thrust sheet in the Daqing Shan Mountains, Inner Mongolia, China. Sci China (Ser D) 41(5):553–560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. M. Casas-Sainz
    • 1
  • T. Román-Berdiel
    • 1
  • B. Oliva-Urcia
    • 2
  • C. García-Lasanta
    • 1
  • J. J. Villalaín
    • 3
  • L. Aldega
    • 4
  • S. Corrado
    • 5
  • C. Caricchi
    • 5
  • C. Invernizzi
    • 6
  • M. C. Osácar
    • 1
  1. 1.Departamento de Ciencias de la TierraUniversidad de ZaragozaSaragossaSpain
  2. 2.Departamento de Geología y GeoquímicaUniversidad Autónoma de MadridMadridSpain
  3. 3.Laboratorio de Paleomagnetismo, Departamento de FísicaUniversidad de BurgosBurgosSpain
  4. 4.Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
  5. 5.Dipartimento di ScienzeUniversità Roma TreRomeItaly
  6. 6.Scuola di Scienze e Tecnologie, Sezione GeologiaUniversità di CamerinoCamerinoItaly

Personalised recommendations