Skip to main content
Log in

The Late Variscan control on the location and asymmetry of the Upper Rhine Graben

  • Review Article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The NNE-trending Upper Rhine Graben (URG) of the European Cenozoic Rift System developed from c. 47 Ma onwards in response to changing lithospheric stresses in the northwestern foreland of the Alps. The composite graben structure consists of three segments, each c. 100 km long and 30–40 km wide, but flares to c. 60 km near its southern and to c. 80 km near its northern termination. Normal faulting induced a total extension of 5–8 km of the 1–2 km thick Mesozoic sedimentary Franconian platform and underlying Variscan basement rocks. However, distribution of an up to 3.5 km thick sedimentary graben fill and cumulative displacements near Eastern and Western Main Border fault systems suggest that subsidence of the graben floor and shoulder uplift created strong cross-sectional asymmetries. Cumulative W-down displacements >3 km along strongly segmented transfer faults in the east contrast with E-down displacements <3 km and major monoclinal “block fields” in the west. Both location and asymmetry of the URG appear to be related to lithospheric shear zones that originated within the central parts of the Variscan orogen between c. 330 and 315 Ma. Following pervasive deformation, HT/LP regional metamorphism and emplacement of granodioritic-granitic plutons a c. 50-km-thick orogenic crust were thinned to an about 30-km-thick two-layered crust above a reconsolidated and relatively planar crust-mantle boundary (Moho). In the URG area extensional thinning of the crust appears to have occurred mainly along a composite NNE-striking and mainly W-down “East Rhine Detachment”, which is partly exposed along the Wehratal, Omerskopf, Otzberg and other mylonitic-cataclastic shear zones in the basement of the eastern graben shoulder. These shear zones probably extend into lower crustal levels, where they are revealed as gently W-dipping seismic reflectors beneath and west of the URG. Major W-down displacements probably account for the mapped abundance of high-grade metamorphic basement rocks on the eastern graben shoulder in contrast to the predominantly low-grade metamorphic to unmetamorphosed sedimentary-volcanic rocks exposed on the western shoulder. Although between c. 310 and 270 Ma NE-trending Permocarboniferous volcanic-sedimentary basins of the URG area subsided along upper crustal faults that mimic the trend of Variscan faults, initial broad lithospheric cooling from c. 270–200 Ma led to subsidence of a distinctly NNE- to SSW-oriented embayment that was probably underlain by thinner Palaeozoic crust in the area of the NNE-trending East Rhine Detachment. After re-emergence of the platform above sea level in late Mesozoic times, the deep-reaching W-dipping “extensional defects” of the East Rhine Detachment exerted a primary lithospheric scale control on both location and cross-sectional asymmetry of the Cenozoic graben structure. NE- and NW-striking, strongly altered and more shallow rooted Permocarboniferous or Mesozoic faults exerted secondary upper crustal controls on transfer faults and the accommodation zones near the terminations and segment boundaries of the URG. Deep crustal to upper lithospheric asymmetries continue to influence the neotectonic setting of the URG, such as westward rising earthquake hypocentres. Seismic activity along the URG appears to be part of a >600 km long zone that delimits the trailing edge of a SW-moving lithospheric block. In the URG area, NE–SW-oriented seismic anisotropy at sublithospheric depths of c. 60–80 km suggest active mantle flow in this direction as a possible driving force for the reactivation of pre-graben lithospheric shear zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahorner L (1983) Historical seismicitiy and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K et al (eds) Plateau uplift. Springer, Berlin, pp 198–221

    Chapter  Google Scholar 

  • Alexandrov P, Royer JJ, Deloule E (2001) 331 ± 9 My emplacement age of the Soultz monzogranite (Rhinegraben basement) by U–Pb ion probe dating of samples from 5 km depth. C R Acad Sci Paris Terre Planète 332:747–754. doi:10.1016/S1251-8050(01)01594-4

    Google Scholar 

  • Altenberger U, Oberhänsli R, Stein E, Moghni M (2001) Geochemistry, tectonic setting and geodynamic significance of late orogenic dikes in the Melibocus Massif, Bergsträsser Odenwald. Mineral Petrol 71:209–228. doi:10.1007/s007100170034

    Article  Google Scholar 

  • Altherr R, Henjes-Kunst F, Langer C, Otto J (1999a) Interaction between felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany). Contrib Mineral Petrol 137:304–322. doi:10.1007/s004100050552

    Article  Google Scholar 

  • Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999b) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443. doi:10.1007/s005310050276

    Article  Google Scholar 

  • Anderle H-J (1974) Block tectonic interrelations between northern Upper Rhine graben and southern Taunus mountains. In: Illies H, Fuchs K (eds) Approaches to taphrogenesis. Schweizerbart, Stuttgart, pp 243–253

    Google Scholar 

  • Anderle H-J (1987) The evolution of the South Hunsrück and Taunus Borderzone. Tectonophysics 134:101–114. doi:10.1016/0040-1951(87)90317-9

    Article  Google Scholar 

  • Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143. doi:10.1016/S0264-3707(00)00024-7

    Article  Google Scholar 

  • Barth A, Ritter JRR, Wenzel F (2015) Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe. Tectonophysics 651–652:172–185. doi:10.1016/j.tecto.2015.04.004

    Article  Google Scholar 

  • Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies H, Fuchs K (eds) Approaches to taphrogenesis. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 78–87

    Google Scholar 

  • Becker A (1999) In situ stress data from the Jura Mountains—new results and interpretation. Terra Nova 11:9–15. doi:10.1046/j.1365-3121.1999.00215.x

    Article  Google Scholar 

  • Becker A, Blümling P, Müller WH (1987) Recent stress field and neotectonics in the Eastern Jura Mountains, Switzerland. Tectonophysics 135:277–288. doi:10.1016/0040-1951(87)90112-0

    Article  Google Scholar 

  • Behr HJ, Conrad W, Trzebski R (2002) Compilation, LINSSER filtering and interpretation of the gravity map of Germany and adjacent regions at a scale of 1:1,000.000. Z Geol Wiss 30:385–402

    Google Scholar 

  • Behrmann JH, Hermann O, Horstmann M, Tanner DC, Bertrand G (2003) Anatomy and kinematics of oblique continental rifting revealed: a three-dimensional case study of the southeast Upper Rhine graben (Germany). AAPG Bull 87:1105–1121

    Article  Google Scholar 

  • Berg D (1961) Geologie des Schwarzwaldrandes zwischen Badenweiler und Kandern. Ber Naturforschenden Ges Freibg 51:5–40

    Google Scholar 

  • Bertleff B, Joachim H, Koziorowski G, Leiber J, Ohmert W, Prestel R, Stober I, Strayle G, Villinger E, Werner J (1988) Ergebnisse der Hydrogeothermiebohrungen in Baden–Württemberg. J GLA Baden-Württ 30:27–116

    Google Scholar 

  • Boenigk W, Frechen M (2006) The Pliocene and Quaternary fluvial archives of the Rhine system. Q Sci Rev 25:550–574. doi:10.1016/j.quascirev.2005.01.018

    Article  Google Scholar 

  • Bogaard PJ, Wörner G (2003) Petrogenesis of basanitic to tholeitic volcanic rocks from the Miocene Vogelsberg, central Germany. J Petrol 44:569–602. doi:10.1093/petrology/44.3.569

    Article  Google Scholar 

  • Bonjer K-P (1997) Seismicity pattern and style of seismic faulting at the eastern borderfault of the southern Rhine Graben. Tectonophysics 275:41–69. doi:10.1016/S0040-1951(97)00015-2

    Article  Google Scholar 

  • Bonjer K-P, Gelbke C, Gilg B, Rouland D, Mayerrosa D, Massinon B (1984) Seismicity and dynamics of the Upper Rhinegraben. J Geophys 55:1–12

    Google Scholar 

  • Bourgeois O, Ford M, Diraison M, LeCarlier de Veslud C, Gerbault M, Pik R, Ruby N, Bonnet S (2007) Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci 96:1003–1031. doi:10.1007/s00531-007-0202-2

    Article  Google Scholar 

  • Boutin R, Montigny R, Thuizat R (1995) Chronologie K–Ar et 39Ar–40Ar du métamorphisme et du magmatisme des Vosges, Comparaison avec les massifs varisques avoisinants. Géol Fr 1:3–25

    Google Scholar 

  • Brewer MS, Lippolt H-J (1972) Rubidium–Strontium-Altersbeziehungen variscischer Granite des südlichen Schwarzwaldes. Fortschr Miner Beih 59(3):5

    Google Scholar 

  • Breyer F (1974) Die Entstehungsgeschichte des Südteils des Rheingrabens nach reflexionsseismischen Messungen, geologischen Kartierungen und Tiefbohrungen. Geol Jb Reihe A 20:3–64

    Google Scholar 

  • Breyer F, Dohr G (1967) Bemerkungen zur Stratigraphie und Tektonik des Rheintalgrabens zwischen Karlsruhe und Offenburg. Abh Geol Landesamt Baden-Württ 6:42–43

    Google Scholar 

  • Brun JP, Gutscher MA, DEKORP-ECORS Team (1992) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data. Tectonophysics 208:39–47. doi:10.1016/0040-1951(92)90340-C

    Article  Google Scholar 

  • Cloos H (1922) Über Ausbau und Anwendung der granit-tektonischen Methode. Abh Preuß Geol Landesanst N.F. 89:1–18

    Google Scholar 

  • Cuenot N, Charléty J, Dorbath L, Haessler H (2006) Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France. Geothermics 35(5):561–575. doi:10.1016/j.geothermics.2006.11.007

    Article  Google Scholar 

  • Delouis B, Haessler H, Cisternas A, Rivera L (1993) Stress tensor determination in France and neighbouring regions. Tectonophysics 221(3):413–438. doi:10.1016/0040-1951(93)90171-F

    Article  Google Scholar 

  • Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black Forest (western Germany). Geol Rundsch 87(1):43–52. doi:10.1007/s005310050188

    Article  Google Scholar 

  • Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci 94:640–656. doi:10.1007/s00531-005-0515-y

    Article  Google Scholar 

  • Dézes P, Schmid S, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33. doi:10.1016/j.tecto.2004.06.011

    Article  Google Scholar 

  • Doebl F (1967) The Tertiary and Pleistocene sediments of the northern and central part of the upper Rhinegraben. Abh GLA Baden-Württ 6:48–54

    Google Scholar 

  • Doebl F, Bader M (1970) Die Geologie des Gebietes der Kleinen Kalmit (westlich Landau/Pfalz) zur Zeit des Tertiärs. Mitt Poll 17:14–23

    Google Scholar 

  • Doebl F, Teichmüller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrhein-Graben. Fortschr Geol Rheinl Westfal 27:1–17

    Google Scholar 

  • Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneiss in the Spessart crystalline complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411. doi:10.1007/BF00260449

    Article  Google Scholar 

  • Dunworth EA, Wilson M (1998) Olivine melilitites of the SW German Tertiary volcanic province: mineralogy and petrogenesis. J Petrol 39:1805–1836. doi:10.1093/petroj/39.10.1805

    Article  Google Scholar 

  • Durst H (1991) Aspects of exploration history and structural style in the Rhine graben area. Spec Publ Eur Assoc Petrol Geol 1:247–261

    Google Scholar 

  • Echtler HP, Chauvet A (1991/1992) Carboniferous convergence and subsequent crustal extension in the southern Schwarzwald (SW Germany). Geodin Acta 5:37–49. doi:10.1080/09853111.1992.11105218

  • Edel J-B, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhinegraben, Black Forest) main structural features deduced from magnetic, gravimetric, and geological data. Tectonophysics 169:303–316. doi:10.1016/0040-1951(89)90093-0

    Article  Google Scholar 

  • Edel J-B, Arnaud JC, Clauss ML, Papillon E (1996) The Paleozoic basement of the “Süddeutsche Großscholle” derived from gravimetric and magnetic data with emphasis on the Kraichgau terrane. Z Geol Wiss 24:41–54

    Google Scholar 

  • Edel J-B, Schulmann K, Rotstein Y (2007) The Variscan tectonic inheritance of the Upper Rhine Graben: evidence of reactivations in the Lias, Late Eocene-Oligocene up to the recent. Int J Earth Sci 96:305–326. doi:10.1007/s00531-006-0092-8

    Article  Google Scholar 

  • Eisbacher GH, Fielitz W (2010) Karlsruhe und seine Region. Samml Geol Führer Gebr Bornträger Stuttg 104:342

    Google Scholar 

  • Eisbacher GH, Lüschen E, Wickert F (1989) Crustal scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21. doi:10.1029/TC008i001p00001

    Article  Google Scholar 

  • Eisele J, Gertisser R, Montenari M (2000) Geochemistry and provenance of Devono-Carboniferous volcano-sedimentary sequences from the Southern Vosges Basin and the geodynamic implications for the western Moldanubian Zone. Geol Soc Lond Spec Publ 179:433–444. doi:10.1144/GSL.SP.2000.179.01.26

    Article  Google Scholar 

  • Ellwanger D, Gabriel G, Simon T, Wielandt-Schuster U, Greiling RO, Hagedorn EM, Hahne J, Heinz J (2008) Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre. Q Sci J 57:314–337

    Google Scholar 

  • Evans KF, Moriya H, Niitsuma H, Jones RH, Phillips WS, Genter A, Baria R (2005) Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site. Geophys J Int 160(1):388–412. doi:10.1111/j.1365-246X.2004.02474.x

    Google Scholar 

  • Fäh D, Gisler M, Jaggi B, Kästli P, Lutz T, Masciadri V, Matt C, Mayer-Rosa D, Rippmann D, Schwarz-Zanetti G, Tauber J, Wenk T (2009) The 1356 Basel earthquake: an interdisciplinary revision. Geophys J Int 178:351–374. doi:10.1111/j.1365-246X.2009.04130.x

    Article  Google Scholar 

  • Feciakova Z, Mertz DF, Renne PR (2007) Geodynamic setting of the Tertiary Hocheifel Volcanism I and II. In: Ritter JRR, Christensen UR (eds) Mantle plumes. Springer, Berlin, pp 185–240. doi:10.1007/978-3-540-68046-8_7

    Google Scholar 

  • Flöttmann T, Oncken O (1992) Constraints on the evolution of the Mid German Crystalline Rise—a study of outcrop west of the river Rhine. Geol Rundsch 81:515–543. doi:10.1007/BF01828613

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries, and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61. doi:10.1144/GSL.SP.2000.179.01.05

    Article  Google Scholar 

  • Frietsch M, Groos JC, Ritter JRR (2015) Detection and delineation of a fracture zone with observation of seismic shear wave anisotropy in the Upper Rhine Graben, SW Germany. Pure Appl Geophys 172:267–282. doi:10.1007/s00024-014-0899-3

    Article  Google Scholar 

  • Fuhrmann T, Westerhaus M, Zippelt K, Heck B (2014) Vertical displacement rates in the Upper Rhine Graben area derived from precise leveling. J Geodyn 88:773–787. doi:10.1007/s00190-014-0721-0

    Article  Google Scholar 

  • Fuhrmann T, Cuenca MC, Knöpfler A, van Leijen FJ, Mayer M, Westerhaus M, Hanssen RF, Heck B (2015) Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophys J Int 203:614–631. doi:10.1093/gji/ggv328

    Article  Google Scholar 

  • Gaßner L, Groos JC, Ritter JRR (2014) Herdflächenanalyse induzierter Erdbeben in der Südpfalz: Reaktivierung präexistenter Bruchflächen und Spannungszustand, Rheinland-Pfalz. Mainz Geowiss Mitt 42:195–214

    Google Scholar 

  • Geissler WH, Sodoudi F, Kind R (2010) Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys J Int 181:604–634. doi:10.1111/j.1365-246X.2010.04548.x

    Google Scholar 

  • Genser H (1959) Stratigraphie und Tektonik der Vorbergzone am südwestlichen Schwarzwaldrand zwischen Staufen und Badenweiler. Ber Naturforschenden Ges Freibg 49:59–112

    Google Scholar 

  • Geyer OF, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart, p 627

    Google Scholar 

  • Glahn A, Granet M (1992) 3-D structure of the lithosphere beneath the southern Rhine Graben area. Tectonophysics 208:149–158. doi:10.1016/0040-1951(92)90341-3

    Article  Google Scholar 

  • Glahn A, Granet M, Achauer U, Liotier Y, Slack PD, Wittlinger G (1993) Southern Rhine Graben: small wavelength tomographic study and implications for the dynamic evolution of the graben. Geophys J Int 113(2):399–413. doi:10.1111/j.1365-246X.1993.tb00896.x

    Article  Google Scholar 

  • Grad M, Tiira T, ESC Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176:279–292. doi:10.1111/j.1365-246X.2008.03919.x

    Article  Google Scholar 

  • Greiling RO, Verma PK (2001) Strike-slip tectonics and granitoid emplacement: an AMS fabric study from the Odenwald crystalline complex, SW Germany. Mineral Petrol 72:165–184. doi:10.1007/s007100170032

    Article  Google Scholar 

  • Grimm MC (2005) Beiträge zur Lithostratigraphie des Paläogens und Neogens im Oberrheingebiet (Oberrheingraben, Mainzer Becken, Hanauer Becken). Geol Jb Hess 132:79–112

    Google Scholar 

  • Grimm KI (2011) Stratigraphie von Deutschland. Tertiär, Teil I (Oberrreingraben). SDGG 75:57–132

    Google Scholar 

  • Grimmer JC, Eisbacher GH, Fielitz W, Hanel M (2014) Late Variscan syn-tectonic emplacement of the Nordschwarzwald Granite Complex during lithosphere-scale E–W-extension-transtension (SW-Germany): constraints from structural and rock magnetic fabric data. SDGG 85:607

    Google Scholar 

  • Groschopf R (1988) Erläuterungen zu Blatt 7914 Sankt Peter. GLA Baden-Württemberg, Stuttgart, p 98

    Google Scholar 

  • Güldenpfennig M (1991) Petrographie und Geochemie unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler–Lenzkirch in der Umgebung von Präg, Südschwarzwald. Jh GLA Baden-Württ 33:5–32

    Google Scholar 

  • Güldenpfennig M (1998) Zur geotektonischen Stellung unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler–Lenzkirch (Südschwarzwald). Z Dtsch Ges Geowiss 149:213–232

    Google Scholar 

  • Hagedorn B, Lippolt H-J (1994) Isotopische Alter von Zerrüttungszonen als Altersschranken der Freiamt-Sexau-Mineralisation (Mittlerer Schwarzwald). Abh GLA Baden-Württ 14:205–219

    Google Scholar 

  • Haimberger R, Hoppe A, Schäfer A (2005) High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. Int J Earth Sci 94(4):657–668. doi:10.1007/s00531-005-0514-z

    Article  Google Scholar 

  • Hann HP, Sawatzki G (1998) Deckenbau und Sedimentationsalter im Grundgebirge des Südschwarzwalds/SW-Deutschland. Z Dtsch Ges Geowiss 149:183–195

    Google Scholar 

  • Hann HP, Sawatzki G (2000) Neue Daten zur Tektonik des Südschwarzwalds. Jber Mitt Oberrrhein Geol Ver 82:363–376. doi:10.1127/jmogv/82/2000/363

    Google Scholar 

  • Hann HP, Sawatzki G, Vaida M (1995) Chitinozoen und Acritarchen des Ordoviziums aus metamorphen Grauwacken der Zone von Badenweiler–Lenzkirch, Schwarzwald, SW-Deutschland. N Jb Geol Paläont Mh 1995:375–383

    Google Scholar 

  • Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003a) The Randgranit in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842. doi:10.1007/s00531-003-0361-8

    Article  Google Scholar 

  • Hann HP, Chen F, Zedler H, Sawatzki G (2003b) Zircon ages and geochemistry of metavolcanic layers from the northern Badenweiler–Lenzkirch Zone (southern Schwarzwald, Germany). N Jb Geol Paläont Abh 230:451–469

    Google Scholar 

  • Hauber L (1993) Der südliche Rheingraben und seine geothermische Situation. Bull Ver Schweiz Petrol Geol Ing 60:53–69

    Google Scholar 

  • Hegner E, Kölbl-Ebert M, Loeschke J (1998) Post-collisional Variscan lamprophyres (Black Forest, Germany): 40Ar/39Ar phlogopite dating, Nd, Pb, Sr isotope, and trace element characteristics. Lithos 45:395–411. doi:10.1016/S0024-4937(98)00041-3

    Article  Google Scholar 

  • Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184. doi:10.1016/S0040-1951(00)00254-7

    Article  Google Scholar 

  • Hegner E, Gruler M, Hann HP, Chen F, Güldenpfennig M (2005) Testing tectonic models with geochemical parameters in greywacke. J Geol Soc Lond 162:87–96. doi:10.1144/0016-764904-029

    Article  Google Scholar 

  • Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482:3–15. doi:10.1016/j.tecto.2009.07.023

    Article  Google Scholar 

  • Heitele H (1988) Die tektonischen Voraussetzungen für das Auftreten von Mineralwässern am pfälzischen Oberrheingrabenrand nach neueren Bohrergebnissen. Mitt Pollichia 75:101–112

    Google Scholar 

  • Henk A (1993) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geol Rundsch 82:3–19. doi:10.1007/BF00563266

    Article  Google Scholar 

  • Henk A (1995) Late Variscan exhumation histories of the southern Rhenohercynian Zone and western Mid-German Crystalline Rise: results from thermal modelling. Geol Rundsch 84:578–590. doi:10.1007/BF00284522

    Article  Google Scholar 

  • Hermann E (2005) Geologie und Tektonik des paläozoischen Sockels im oberen Murgtal (Baiersbronn, SW-Deutschland). Diploma thesis, University of Karlsruhe, 99 pp

  • Hess JC, Schmidt G (1989) Zur Altersstellung der Kataklasite im Bereich der Otzberg Zone, Odenwald. Geol Jb Hess 117:69–77

    Google Scholar 

  • Hess JC, Hanel M, Arnold M, Gaiser A, Prowatke S, Stadler S, Kober B (2000) Variscan magmatism at the northern margin of the Moldanubian Vosges and Schwarzwald I. Ages of intrusion and cooling history. Eur J Min Bh 12:79

    Google Scholar 

  • Hincke E (2011) Deformierte Granite im Südschwarzwald als Indikatoren lokaler variskischer Deformationszonen. Dissertation University of Hamburg, 129 p

  • Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci 96:979–1002. doi:10.1007/s00531-006-0162-y

    Article  Google Scholar 

  • Hinsken S, Schmalholz SM, Ziegler PA, Wetzel A (2011) Thermo-tectono-stratigraphic forward modelling of the Upper Rhine Graben in reference to geometric balancing: brittle crustal extension on a highly viscous mantle. Tectonophysics 509:1–13. doi:10.1016/j.tecto.2010.12.006

    Article  Google Scholar 

  • Hinzen K-G (2003) Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377:325–356. doi:10.1016/j.tecto.2003.10.004

    Article  Google Scholar 

  • Homuth B, Rümpker G, Deckert H, Kracht M (2014) Seismicity of the northern Upper Rhine Graben—constraints on the present-day stress field from focal mechanisms. Tectonophysics 632:8–20. doi:10.1016/j.tecto.2014.05.037

    Article  Google Scholar 

  • Horn P, Lippolt H-J, Todt W (1972) Kalium–Argon-Altersbestimmungen an tertiären Vulkaniten des Oberrhein-Grabens. I. Gesamtgesteinsalter. Eclogae Geol Helv 65:131–156

    Google Scholar 

  • Illies H (1965) Bauplan und Baugeschichte des Oberrheingrabens. Oberrh Geol Abh 14:1–54

    Google Scholar 

  • Illies H, Greiner G (1976) Regionales Stress-Feld und Neotektonik in Mitteleuropa. Oberrh Geol Abh 25:1–40

    Google Scholar 

  • Jodocy M, Stober I (2010) Geologisch-geothermische Tiefenprofile für den südlichen Teil des Oberrheingrabens in Baden-Württemberg. Z Geol Wiss 38:3–25

    Google Scholar 

  • Kalt A, Altherr R, Hanel M (2000) The Variscan basement of the Schwarzwald. Beih Eur J Min 12(2):1–43

    Google Scholar 

  • Kastrup U, Zoback ML, Deichmann N, Evans KF, Giardini D, Michael AJ (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. J Geophys Res 109:B01402. doi:10.1029/2003JB002550

    Article  Google Scholar 

  • Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by 40Ar/39Ar and single-zircon 207Pb/206Pb measurements. Geol Rundsch 77(3):693–711. doi: 10.1007/BF01830178

    Article  Google Scholar 

  • Kirschner S, Ritter JRR, Wawerzinek B (2011) Teleseismic wave front anomalies at a continental rift: no mantle anomaly below the Central Upper Rhine Graben. Geophys J Int 186:447–461. doi:10.1111/j.1365-246X.2011.05071.x

    Article  Google Scholar 

  • Kober B, Kalt A, Hanel M, Pidgeon RT (2004) SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib Min Pet 147(3):330–345. doi:10.1007/s00410-004-0560-8

    Article  Google Scholar 

  • Korn D (1929) Tektonische und gefügeanalytische Untersuchungen im Grundgebirge des Böllsteiner Odenwaldes. N Jb Min Geol Paläo B Beil 62:171–234

    Google Scholar 

  • Kowalczyk G (1983) Das Rotliegende zwischen Taunus und Spessart. Geol Abh Hess 84:1–99

    Google Scholar 

  • Kratinova Z, Schulmann K, Edel J-B, Tabaud A-S (2012) AMS record of brittle dilation, viscous-stretching and gravity-driven magma ascent in area of magma-rich crustal extension (Vosges Mts., NE France). Int J Earth Sci 101:803–817. doi:10.1007/s00531-011-0711-x

    Article  Google Scholar 

  • Krecher M, Behrmann JH (2004) Tectonics of the Vosges (NE France) and the Schwarzwald (SW Germany): evidence from Devonian-Carboniferous active margin basins and their deformation. Geotecton Res 95:61–86. doi:10.1127/1864-5658/07/0095-0061

    Article  Google Scholar 

  • Krecher M, Behrmann JH, Müller-Sigmund H (2007) Sedimentology and tectonic setting of Devonian-Carboniferous turbidites and debris flow deposits in the Variscan Vosges Mountains (Markstein Group, NE-France). Z Dtsch Ges Geowiss 158:1063–1087. doi:10.1127/1860-1804/2007/0158-1063

    Google Scholar 

  • Krohe A (1991) Emplacement of synkinematic plutons in the Variscan Odenwald (Germany) controlled by transtensional tectonics. Geol Rundsch 80:391–409. doi:10.1007/BF01829373

    Article  Google Scholar 

  • Krohe A (1992) Structural evolution of intermediate crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 206:357–386. doi:10.1016/0040-1951(92)90443-A

    Article  Google Scholar 

  • Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388. doi:10.1029/96TC01110

    Article  Google Scholar 

  • Krohe A, Eisbacher GH (1988) Oblique crustal detachment in the Variscan Schwarzwald, southwestern Germany. Geol Rundsch 77(1):25–43. doi:10.1007/BF01848674

    Article  Google Scholar 

  • Kümmerle E, Seidenschwann G (1993) Erläuterungen Geol. Karte Hessen 1: 25,000, Bl. Nr.5818 Frankfurt a.M. Ost. Hess Landesamt Bodenforschung: 307 pp

  • Laubscher H (1982) Die Südostecke des Rheingrabens—ein kinematisches und dynamisches Problem. Eclogae Geol Helv 75(1):101–116

    Google Scholar 

  • Laubscher H (1987) Die tektonische Entwicklung der Nordschweiz. Eclogae Geol Helv 80:287–303

    Google Scholar 

  • Laubscher H (2001) Plate interactions at the southern end of the Rhine graben. Tectonophysics 343(1):1–19. doi:10.1016/S0040-1951(01)00193-7

    Article  Google Scholar 

  • Laubscher H (2003) The Miocene dislocations in the northern foreland of the Alps: oblique subduction and its consequences (Basel area, Switzerland-Germany). Jber Mitt Oberrh Geol Ver NF 85:432–439

    Google Scholar 

  • Laue S, Reischmann T (1994) Petrographie und Geochemie variszischer Intrusiva der westlichen Rheingrabenschulter. Mitt Pollichia 81:195–214

    Google Scholar 

  • Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008. Geol Jb E59, Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart

  • Link K (2010) Die thermotektonische Entwicklung des Rheingraben-Gebietes seit der Kreide. Dissertation, University of Freiburg, 318 pp

  • Lippolt H-J (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) und karbonischer Abkühlungsalter (K–Ar) der Muskovit–Biotit–Gneise des Spessarts und der Biotit–Gneise des Böllsteiner Odenwalds. Geol Rundsch 75:569–583. doi:10.1007/BF01820632

    Article  Google Scholar 

  • Lippolt H-J, Baranyi J, Todt W (1975) Die Kalium–Argon Alter der post-permischen Vulkanite des nordöstlichen Oberrheingrabens. Aufschluss Sonderband 27:205–212

    Google Scholar 

  • Lippolt H-J, Hradetzky H, Hautmann S (1994) K-Ar dating of amphibole-bearing rocks in the Schwarzwald, SW Germany: I. 40Ar/39Ar age constraints to Hercynian HT-metamorphism. N Jb Min Mh 10:433–448

    Google Scholar 

  • Loeschke J, Güldenpfennig M, Hann HP, Sawatzki G (1998) Die Zone von Badenweiler–Lenzkirch (Schwarzwald): Eine variskische Suturzone. Z Dtsch Ges Geowiss 149:197–212

    Google Scholar 

  • Lüschen E, Wenzel F, Sandmeier KJ, Menges D, Rühl T, Stiller M, Janoth W, Keller F, Söllner W, Thomas R, Krohe A, Stenger R, Fuchs K, Wilhelm H, Eisbacher GH (1987) Near-vertical and wide-angle seismic surveys in the Black Forest, SW-Germany. In: Emmermann R et al (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 297–362. doi:10.1007/978-3-642-74588-1_14

    Google Scholar 

  • Lutz F (2015) Seismizität und Tektonik im südlichen Oberrheingraben. Bachelorarbeit, Karlsruher Institut für Technologie, Geophysikalisches Institut, 46 pp

  • Lutz M, Cleintuar M (1999) Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben. Bull Appl Geol 4:3–80

    Google Scholar 

  • Mälzer H (1988) Regional and local kinematics in SW-Germany by geodetic methods—geophysical and geological interpretation. J Geodyn 9/2:141–151

    Article  Google Scholar 

  • Marell D (1989) Das Rotliegende zwischen Odenwald und Taunus. Geol Abh Hess 89:1–128

    Google Scholar 

  • Marschall HR, Kalt A, Hanel M (2003) P–T-evolution of a Variscan lower crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44(2):227–253. doi:10.1093/petrology/44.2.227

    Article  Google Scholar 

  • Matter A (1987) Faziesanalyse und Ablagerungsmilieu der Permokarbons im Nordschweizer Trog. Eclogae Geol Helv 80:345–367

    Google Scholar 

  • Maurin JC, Niviére B (2000) Extensional forced folding and decollement of the prerift series along the Rhine graben and their influence on the geometry of the synrift sequences. Geol Soc Lond Spec Publ 169:73–86

    Article  Google Scholar 

  • Mayer G, Mai M, Plenefisch T, Echtler H, Lüschen E, Wehrle V, Bonjer K-P, Prodehl C, Fuchs K (1997) The deep crust of the southern Rhinegraben: reflectivity and seismicity as images of dynamic processes. Tectonophysics 275:15–40. doi:10.1016/S0040-1951(97)00014-0

    Article  Google Scholar 

  • Mazurek M, Meyer J, Peters T (1992) The crystalline basement of Northern Switzerland. Eclogae Geol Helv 85:767–769

    Google Scholar 

  • Mehnert KR (1953) Petrographie und Abfolge der Granitisation im Schwarzwald. N Jb Min Abh 85:59–140

    Google Scholar 

  • Meier L, Eisbacher GH (1991) Crustal kinematics and deep structure of the northern Rhine Graben, Germany. Tectonics 10(3):621–630. doi:10.1029/91TC00142

    Article  Google Scholar 

  • Meissner R, Bortfeld RK (1990) DEKORP-Atlas. Results of Deutsches Kontinentales Reflexionsseismisches Programm. Springer, 21 pp. doi:10.1007/978-3-642-75662-7

  • Meixner J, Schill E, Grimmer JC, Gaucher E, Kohl T, Klingler J (2016) Structural control of geothermal reservoirs in extensional tectonic settings: an example from the Upper Rhine Graben. J Struct Geol 82:1–15. doi:10.1016/j.jsg.2015.11.003

    Article  Google Scholar 

  • Montenari M, Maas R (1996) Die metamorphen Schiefer der Badenweiler–Lenzkirch-Zone/Südschwarzwald—Paläontologische Altersstellung (Acritarchen und Chitinozoen) und Tektonik. Ber Naturforschenden Ges Freibg 84(85):33–79

    Google Scholar 

  • Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219. doi:10.1016/S0040-1951(97)00021-8

    Article  Google Scholar 

  • Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart crystalline complex, mid-German crystalline rise. Mineral Petrol 44:39–55. doi:10.1007/BF01167099

    Article  Google Scholar 

  • Okrusch M (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 201–213. doi:10.1007/978-3-642-77518-5_21

    Chapter  Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the Variscan Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20. doi:10.1007/s005310050118

    Article  Google Scholar 

  • Peters G, van Balen R (2007) Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben. Tectonophysics 430:41–65. doi:10.1016/j.tecto.2006.10.008

    Article  Google Scholar 

  • Plaumann S, Groschopf R, Schädel K (1986) Kompilation einer Schwerekarte und einer geologischen Karte für den mittleren und nördlichen Schwarzwald mit einer Interpretation gravimetrischer Detailvermessungen. Geol Jb E33:15–30

  • Plein E (1992a) Das Erdölfeld Eich-Königsgarten. Jber Mitt Oberrrhein Geol Ver 74:41–54

    Google Scholar 

  • Plein E (1992b) Die Erdgasspeicher Hähnlein/Stockstadt. Jber Mitt Oberrh Geol Ver 74:73–83

    Google Scholar 

  • Plenefisch T, Bonjer K-P (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275:71–97. doi:10.1016/S0040-1951(97)00016-4

    Article  Google Scholar 

  • Prodehl C, Mueller S, Glahn A, Gutscher M, Haak V (1992) Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208:113–138. doi:10.1016/0040-1951(92)90339-8

    Article  Google Scholar 

  • Prodehl C, Mueller S, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Developments in geotectonics, vol 25. Elsevier, pp 133–212

  • Reischmann T, Anthes G (1996) Geochronology of the mid-German crystalline rise west of the River Rhine. Geol Rundsch 85:761–774. doi:10.1007/BF02440109

    Article  Google Scholar 

  • Reischmann T, Anthes G, Jaeckel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Mineral Petrol 72:29–44. doi:10.1007/s007100170025

    Article  Google Scholar 

  • Ritter JRR, Wagner M (2008) High-resolution SKS anisotropy indicates asthenospheric flow below SW Germany. Geophys Res Abs 10:03951

    Google Scholar 

  • Ritter JRR, Wagner M, Bonjer K-P, Schmidt B (2009) The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben. Int J Earth Sci 98(3):697–705. doi:10.1007/s00531-007-0284-x

    Article  Google Scholar 

  • Rittmann KL (1984) Argon in Hornblende, Biotit und Muscovit bei der geologischen Abkühlung—40Ar/39Ar-Untersuchungen. Dissertation, University of Heidelberg, 278 p

  • Roll A (1979) Versuch einer Volumenbilanz des Oberrheintalgrabens und seiner Schultern. Geol Jb A 52:1–82

    Google Scholar 

  • Rothausen K, Sonne V (1984) Mainzer Becken. Sammlung geol. Führer 79, Gebr. Bornträger, Stuttgart, 202 p

  • Rotstein Y, Schaming M (2008) Tectonic implications of faulting styles along a rift margin: the boundary between the Rhine Graben and the Vosges Mountains. Tectonics 27:TC2001. doi:10.1029/2007TC002149

    Article  Google Scholar 

  • Rotstein Y, Behrmann JH, Lutz M, Wirsing G, Luz A (2005a) Tectonic implications of transpression and transtension: Upper Rhine Graben. Tectonics 24:TC6001. doi:10.1029/2005TC001797

    Google Scholar 

  • Rotstein Y, Schaming M, Rousse S (2005b) Tertiary tectonics of the Dannemarie Basin, upper Rhine graben, and regional implications. Int J Earth Sci 94:669–679. doi:10.1007/s00531-005-0473-4

    Article  Google Scholar 

  • Schad A (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh GLA Baden-Württ 4:29–40

    Google Scholar 

  • Schad A (1964) Feingliederung des Miozäns und die Deutung der nacholigozänen Bewegungen im Mittleren Rheingraben. Abh GLA Baden-Württ 5:1–56

    Google Scholar 

  • Schäfer A, Korsch RJ (1998) Formation and sediment fill of the Saar-Nahe basin (Permo-Carboniferous, Germany). Z Dtsch Ges Geowiss 149(2):233–269

    Google Scholar 

  • Schälicke W (1975) Die Otzberg-Zone. Aufschluss Sonderband 27:47–57

    Google Scholar 

  • Schaltegger U (1997) The age of an Upper Carboniferous/Lower Permian sedimentary basin and its hinterland as constrained by U–Pb dating of volcanic and detrital zircons (northern Switzerland). Schweiz Miner Petrogr Mitt 77:101–111

    Google Scholar 

  • Schaltegger U (2000) U–Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828. doi:10.1007/s005310050308

    Article  Google Scholar 

  • Schaltegger U, Schneider J-L, Maurin JC, Corfu F (1996) Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth Plan Sci Lett 144:403–419. doi:10.1016/S0012-821X(96)00187-2

    Article  Google Scholar 

  • Schleicher H (1978) Petrologie der Granitporphyre des Schwarzwalds. Neues Jb Min Abh 132:153–181

    Google Scholar 

  • Schleicher H (1994) Collision-type granitic melts in the context of thrust tectonics and uplift history (Triberg granite complex, Schwarzwald, Germany). N Jb Min Abh 166:211–237

    Google Scholar 

  • Schleicher H, Fritsche R (1978) Zur Petrologie des Triberger Granites (Mittlerer Schwarzwald). Jh GLA Baden-Württ 20:15–41

    Google Scholar 

  • Schleicher H, Keller J (1991) Isotopengeochemie der Alkalivulkanite und Karbonatite des Kaiserstuhls: Aussagen zur Magmengenese und zur isotopischen Zusammensetzung des Erdmantels. Jh GLA Baden-Württ 33:33–57

    Google Scholar 

  • Schmid SM, Slejko D (2009) Seismic source characterization of the Alpine foreland in the context of a probabilistic seismic hazard analysis by PEGASOS Expert Group 1 (EG1a). Swiss J Geosci 102:121–148. doi:10.1007/s00015-008-1300-2

    Article  Google Scholar 

  • Schmitt AK, Marks MA, Nesbor HD, Markl G (2007) The onset and origin of differentiated Rhine Graben volcanism based on U–Pb ages and oxygen isotopic composition of zircon. Eur J Miner 19:849–857. doi:10.1127/0935-1221/2007/0019-1776

    Article  Google Scholar 

  • Schnaebele R (1948) Monographie géologique du champ pétrolifère de Pechelbronn. Mem Serv Carte Geol Alsace 7:1–254

    Google Scholar 

  • Schneider J-L, Edel J-B (1995) Der permische Vulkanismus der Nordvogesen (Niedeck–Donon–Massiv). Jber Mitt Oberrh Geol Ver 77:201–221. doi:10.1127/jmogv/77/1995/201

    Google Scholar 

  • Schneider J-L, Maas R, Gall J-C, Duringer P (1989) L’événement intraviséen dans la zone moldanubienne de la chaîne varisque d’Europe: les données des formations volcano-sédimentaires dévono-dinantiennes du Massif Central Francais, des Vosges du Sud (France) et de la Forêt Noire (R.F.A.). Geol Rundsch 78:555–570. doi:10.1007/BF01776191

    Article  Google Scholar 

  • Schubert W, Lippolt H-J, Schwarz W (2001) Early to middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132. doi:10.1007/s007100170029

    Article  Google Scholar 

  • Schuler C, Steiger RH (1978) On the genesis of feldspar megacrysts in granites: a Rb±Sr isotopic study. In: Zartman RE (ed) ICOG 4 Abstract, pp 386–387

  • Schulmann K, Schaltegger U, Jezek K, Thompson AB, Edel J-B (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan Orogen in western Europe). Am J Sci 302:856–879. doi:10.2475/ajs.302.10.856

    Article  Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:TC1006. doi:10.1029/2001TC900022

    Article  Google Scholar 

  • Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750. doi:10.1007/s00531-004-0451-2

    Article  Google Scholar 

  • Sebert M, Wimmenauer W (1997) Metagabbros and meta-anorthosites in the Southern Black Forest (Germany)—fragments of an ancient layered intrusion? Jh GLA Baden-Württ 34:193–212

    Google Scholar 

  • Seiberlich CKA, Ritter JRR, Wawerzinek B (2013) Topography of the lithosphere-asthenosphere boundary below the Upper Rhine Graben Rift and the volcanic Eifel region, Central Europe. Tectonophysics 603:222–236. doi:10.1016/j.tecto.2013.05.034

    Article  Google Scholar 

  • Simon K (1990) Hydrothermal alteration of Variscan granites, southern Schwarzwald, Federal Republic of Germany. Contrib Mineral Petrol 105:177–196. doi:10.1007/BF00678985

    Article  Google Scholar 

  • Sittig E (2003) Die Lichtental-Formation von Baden-Baden und das Normalprofil des Schwarzwälder Rotliegenden. Jh LGRB Baden-Württ 39:177–238

    Google Scholar 

  • Sittler C (1967) Le soubassement et le remplissage sédimentaire du Fossé Rhénan au niveau du Bassin de Pechelbronn et du Seuil d’Erstein. Coupes Géologiques à travers le Fossé Rhénan. In: Rothé J, Sauer K (eds) The Rhinegraben Progress Report 1967, International Upper Mantle Project, Scientific Report No. 13, Abh GLA Baden-Württemberg, vol 6, pp 69–81

  • Skrzypek E, Tabaud A-S, Edel J-B, Schulmann K, Cocherie A, Guerrot C, Rossi P (2012) The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt. Int J Earth Sci 101:951–972. doi:10.1007/s00531-011-0709-4

    Article  Google Scholar 

  • Sommermann AE (1993) Zirkonalter aus dem Granit der Bohrung Saar 1. Beih Eur J Miner 5:145

    Google Scholar 

  • Stein E (2000) Zur Platznahme von Granitoiden—Vergleichende Fallstudien zu Gefügen und Platznahmemechanismen aus den White-Inyo Mountains, California, USA und dem Bergsträsser Odenwald. Geotekton Forsch 93:1–344

    Google Scholar 

  • Stenger R (1979) Petrographie und Geochemie der endogenen Einschlüsse im Albtalgranit (Südschwarzwald). Jh GLA Baden-Württ 21:89–106

    Google Scholar 

  • Straub EW (1962) Die Erdöl- und Erdgaslagerstätten in Hessen und Rheinhessen. Abh Geol Landesamt Baden-Württ 4:123–136

    Google Scholar 

  • Tesauro M, Höllenstein C, Egli R, Geiger A, Kahle HG (2005) Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps. Int J Earth Sci 94(4):525–537. doi:10.1007/s00531-004-0453-0

    Article  Google Scholar 

  • Thury M, Diebold P (1987) Überblick über das geologische Untersuchungsprogramm der Nagra in der Nordschweiz. Eclogae Geol Helv 80:271–286

    Google Scholar 

  • Timar-Geng Z, Fügenschuh B, Schaltegger U, Wetzel A (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweiz Miner Petrogr Mitt 84:257–269. doi:10.5169/seals-63749

    Google Scholar 

  • Timar-Geng Z, Fügenschuh B, Wetzel A, Dresmann H (2006) Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int J Earth Sci 95:685–702. doi:10.1007/s00531-005-0059-1

    Article  Google Scholar 

  • Todt WA (1976) Zirkon-U/Pb-Alter des Malsburg-Granits vom Südschwarzwald. N Jb Min Mh 12:532–544

    Google Scholar 

  • Todt WA, Altenberger U, von Raumer JF (1995) U–Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geol Rundsch 84:466–472. doi:10.1007/BF00284514

    Google Scholar 

  • Ustaszewski K, Schumacher ME, Schmid SM (2005) Simultaneous normal faulting and extensional flexuring during rifting: an example from the southernmost Upper Rhine Graben. Int J Earth Sci 94:680–696. doi:10.1007/s00531-004-0454-z

    Article  Google Scholar 

  • Valley B, Evans KF (2009) Stress orientation to 5 km depth in the basement below Basel (Switzerland) from borehole failure analysis. Swiss J Geosci 102:467–480. doi:10.1007/s00015-009-1335-z

    Article  Google Scholar 

  • Villemin T, Alvarez F, Angelier J (1986) The Rhinegraben: extension, subsidence and shoulder uplift. Tectonophysics 128:47–59. doi:10.1016/0040-1951(86)90307-0

    Article  Google Scholar 

  • Voigt-Kirsch G (1990) Geologische und geochronologische Arbeiten im Kristallin der oberen Murg im Nordschwarzwald. Dissertation, University of Heidelberg, 280 pp

  • Von Seckendorff V, Timmermann MJ, Kroner MJ, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of late Carboniferous—early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogeny (Germany). Geol Soc Lond Spec Publ 223:335–360. doi:10.1144/GSL.SP.2004.223.01.15

    Article  Google Scholar 

  • Wager R (1929) Tektonische Untersuchungen an einem Teil der Nordschwarzwälder Granite. Badische Geol Abh 1:119–138

    Google Scholar 

  • Wagner M (2007) Anisotropie-Untersuchungen am Mittleren Oberrhein. Diplomarbeit, Geophysikalisches Institut, Universität Karlsruhe (TH), 93 pp

  • Wagner GA, Storzer D (1975) Spaltspuren und ihre Bedeutung für die thermische Geschichte des Odenwaldes. Aufschluss Sonderband 27:79–86

    Google Scholar 

  • Wagner GA, Michalski I, Zaun P (1989) Apatite fission track dating of the Central European basement. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program. Springer, Berlin, pp 501–526

    Google Scholar 

  • Walker KT, Bokelmann GHR, Klemperer S, Bock G (2007) Seismic anisotropy in the asthenosphere beneath the Eifel region, western Germany. In: Ritter JRR, Christensen UR (eds) Mantle plumes. Springer, Berlin, pp 439–464

    Chapter  Google Scholar 

  • Werchau A, Schleicher H, Kramm U (1989) Erste Altersbestimmung an Monaziten des Schwarzwaldes. Eur J Miner 1:198

    Google Scholar 

  • Werner W, Dennert V (2004) Lagerstätten und Bergbau im Schwarzwald. LGRB Baden-Württ, Freiburg 334 pp

    Google Scholar 

  • Werner W, Franzke H-J (1994) Tektonik und Mineralisation der Hydrothermalgänge am Schwarzwaldrand im Bergbaurevier Freiamt-Sexau. Abh GLA Baden-Württ 14:27–98

    Google Scholar 

  • Wickert F, Eisbacher GH (1988) Two-sided Variscan thrust tectonics in the Vosges Mountains, northeastern France. Geodin Acta 2:101–120. doi:10.1080/09853111.1988.11105160

    Article  Google Scholar 

  • Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald crystalline complex: evidence for high-pressure metamorphism in the Mid-German crystalline rise, Germany. Lithos 59:109–125. doi:10.1016/S0024-4937(01)00059-7

    Article  Google Scholar 

  • Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald–Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42. doi:10.1016/j.lithos.2015.01.018

    Article  Google Scholar 

  • Willner AP, Massonne HJ, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German crystalline rise. Geol Rundsch 80:369–389. doi:10.1007/BF01829372

    Article  Google Scholar 

  • Wilson M, Downes H (1992) Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208:173–182. doi:10.1016/0040-1951(92)90343-5

    Article  Google Scholar 

  • Wimmenauer W, Hanel M (1997) Die Fortsetzung der Randgranit-Assoziation nach Nordosten und Norden. Jh GLA Baden-Württ 37:7–24

    Google Scholar 

  • Wimmenauer W, Stenger R (1989) Acid and intermediate HP metamorphic rocks in the Schwarzwald (Federal Republic of Germany). Tectonophysics 157:109–116. doi:10.1016/0040-1951(89)90344-2

    Article  Google Scholar 

  • Wirth E (1962) Die Erdöllagerstätten Badens. Abh GLA Baden-Württ 4:63–80

    Google Scholar 

  • Wirth E (1964) Feingliederung des Miozäns und die Deutung der nacholigozänen Bewegungen im Mittleren Rheingraben. Abh GLA Baden-Württ 5:1–56

    Google Scholar 

  • Wittmann O (1957) Geologie der Lörracher Flexurschollen. Jh GLA Baden-Württ 2:219–289

    Google Scholar 

  • Zeis S, Gajewski D, Prodehl C (1990) Crustal structure of southern Germany from seismic refraction data. Tectonophysics 176:59–86. doi:10.1016/0040-1951(90)90259-B

    Article  Google Scholar 

  • Ziegler PA, Dézes P (2005) Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci 94:594–614. doi:10.1007/s00531-005-0474-3

    Article  Google Scholar 

  • Ziegler P, Fraefel M (2009) Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben. Swiss J Geosci 102:57–75. doi:10.1007/s00015-009-1306-4

    Article  Google Scholar 

  • Ziegler PA, Schumacher ME, Dézes P, van Wees J-D, Cloethingh S (2004) Post- Variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. Geol Soc Lond Spec Publ 225:289–317. doi:10.1144/GSL.SP.2004.223.01.13

    Article  Google Scholar 

  • Zucca JJ (1984) The crustal structure of the southern Rhinegraben from re-interpretation of seismic refraction data. J Geophys 55:13–22

    Google Scholar 

Download references

Acknowledgments

Constructive reviews of J. Kley and A. Henk as well as editorial handling of W. Dullo are gratefully acknowledged. We also gratefully acknowledge support of M. Hanel for discussions in the field and for providing sample location information of the geochronological samples of Hess et al. (2000) shown in our Fig. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Grimmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimmer, J.C., Ritter, J.R.R., Eisbacher, G.H. et al. The Late Variscan control on the location and asymmetry of the Upper Rhine Graben. Int J Earth Sci (Geol Rundsch) 106, 827–853 (2017). https://doi.org/10.1007/s00531-016-1336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1336-x

Keywords

Navigation