Skip to main content

Advertisement

Log in

Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth’s largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E–W and NW–SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar–Izmir–Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth’s upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction–accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar–Izmir–Ankara suture and the West Anatolia Transfer Zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akay E (2009) Geology and petrology of the Simav Magmatic Complex (NW Anatolia) and its comparison with the Oligo-Miocene granitoids in NW Anatolia: implications on Tertiary tectonic evolution of the region. Int J Earth Sci 98(7):1655–1675

    Article  Google Scholar 

  • Aydın İ, Karat Hİ, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Int 162(2):633–640

    Article  Google Scholar 

  • Bayrak M, Nalbant S (2001) Conductive crust imaged in western Turkey by MT. Geophys Res Lett 28(18):3521–3524

    Article  Google Scholar 

  • Bilim F, Akay T, Aydemir A, Kosaroglu S (2016) Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60:44–57

    Article  Google Scholar 

  • Budakoğlu E, Utkucu M (2013) 19 Mayis 2011 Simav depreminin uzak-alan kayitlariyla incelenmesi (in Turkish). In: 2nd Turkish earthquake engineering and seismology conference (2 Türkiye Deprem Mühendisliği ve Sismoloji Konferansı), Hatay, Turkey, pp 1–6

  • Candan O, Dora OÖ, Oberhänsli R, Çetinkaplan M, Partzsch JH, Warkus FC, Dürr S (2001) Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. Int J Earth Sci (Geologische Rundschau) 89:793–811

    Article  Google Scholar 

  • Candan O, Koralay OE, Akal C, Kaya O, Oberhänsli R, Dora OÖ, Konak N, Chen F (2011) Supra-Pan-African unconformity between core and cover series of the Menderes Massif/Turkey and its geological implications. Precambr Res 184(1–4):1–23. doi:10.1016/j.precamres.2010.09.010

    Article  Google Scholar 

  • Catlos EJ, Çemen I (2005) Monazite ages and the evolution of the Menderes Massif. Int J Earth Sci 94(2):204–217

    Article  Google Scholar 

  • Catlos E, Jacob L, Oyman T, Sorensen S (2012) Long-term exhumation of an Aegean metamorphic core complex granitoids in the Northern Menderes Massif, western Turkey. Am J Sci 312(5):534–571. doi:10.2475/05.2012.03

    Article  Google Scholar 

  • Cemen I, Catlos EJ, Gögüs O, Özerdem C (2006) Postcollisional extensional tectonics and exhumation of the Menderes massif in the Western Anatolia extended terrane, Turkey. In: Dilek Y, Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper 409, pp 353–379

  • Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res B Solid Earth 101:3139–3156

    Article  Google Scholar 

  • Çiftçi NB, Bozkurt E (2009) Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sediment Geol 216(3–4):49–79. doi:10.1016/j.sedgeo.2009.01.004

    Article  Google Scholar 

  • Çiftçi NB, Bozkurt E (2010) Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Res 22(6):846–873. doi:10.1111/j.1365-2117.2009.00438.x

    Google Scholar 

  • Cohen HA, Dart CJ, Akyüz HS, Barka A (1995) Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes graben, western Turkey. J Geol Soc Lond 152:629–638

    Article  Google Scholar 

  • Dilek Y, Altunkaynak Ş (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. In: Van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. The Geological Society, London, Special Publication 311, London

  • Dolmaz M, Hisarli Z, Ustaömer T, Orbay N (2005) Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure appl Geophys 162(3):571–590

    Article  Google Scholar 

  • Dubertret L (1964) Geological Map of Turkey, 1:500,000 series Izmir sheet. Maden Tetkik ve Arama Enstitüsü, Ankara

    Google Scholar 

  • Düzgit Z, Hisarli ZM, Sayin N, Orbay N (2006) Correlation between gravity and magnetic anomalies of Western Anatolia and its relation to tectonic structures. Earth Planets Space 58(8):943–949

    Article  Google Scholar 

  • Emre T, Sözbilir H (2007) Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turk J Earth Sci 16:441–470

    Google Scholar 

  • Erkül F (2010) Tectonic significance of synextensional ductile shear zones within the Early Miocene Alaçamdag granites, northwestern Turkey. Geol Mag 147:611–637

    Article  Google Scholar 

  • Ersoy EY, Helvacı C, Palmer MR (2010) Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia: implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings. J Volcanol Geotherm Res 198(1–2):112–128

    Article  Google Scholar 

  • Faulds JE, Bouchot V, Moeck I, Oguz K (2009) Structural controls on geothermal systems in western Turkey: a preliminary report. Geotherm Resour Counc Trans 33:375–381

    Google Scholar 

  • Gallardo LA (2007) Multiple cross-gradient joint inversion for geospectral imaging. Geophys Res Lett 34(19):L19301

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous nearsurface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30(13):1658–1661

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J Geophys Res Solid Earth 109(B3):B03311. doi:10.1029/2003JB002716

    Article  Google Scholar 

  • Gallardo LA, Meju MA (2011) Structure-coupled multiphysics imaging in geophysical sciences. Rev Geophys 49(1):1–19

    Article  Google Scholar 

  • Gallardo LA, Thebaud N (2012) New insights into Archean granite-greenstone architecture through joint gravity and magnetic inversion. Geology 40(3):215–218. doi:10.1130/g32817.1

    Article  Google Scholar 

  • Gallardo LA, Perez-Flores MA, Gomez-Trevino E (2005) Refinement of three-dimensional multilayer models of basins and crustal environments by inversion of gravity and magnetic data. Tectonophysics 397:37–54

    Article  Google Scholar 

  • Gallardo LA, Fontes SL, Meju MA, Buonora MP, de Lugao PP (2012) Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: example from Santos Basin, offshore Brazil. Geophysics 77(5):B237–B251. doi:10.1190/geo2011-0394.1

    Article  Google Scholar 

  • Gessner K, Ring U, Johnson C, Hetzel R, Passchier CW, Gungor T (2001a) An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29:611–614

    Article  Google Scholar 

  • Gessner K, Piazolo S, Gungor T, Ring U, Kroener A, Passchier CW (2001b) Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide Belt, Southwest Turkey. Int J Earth Sci 89:766–780

    Article  Google Scholar 

  • Gessner K, Ring U, Passchier CW, Gungor T (2001c) How to resist subduction: evidence for large-scale out-of-sequence thrusting during Eocene collision in western Turkey. J Geol Soc 158:769–784

    Article  Google Scholar 

  • Gessner K, Collins AS, Ring U, Gungor T (2004) Structural and thermal history of poly-orogenic basement: U–Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey. J Geol Soc 161:93–101

    Article  Google Scholar 

  • Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson SN (2013) What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24:243–274

    Article  Google Scholar 

  • Glodny J, Hetzel R (2007) Precise U–Pb ages of syn-extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geol Mag 144(2):235–246

    Article  Google Scholar 

  • Gürer A, Bayrak M (2007) Relation between electrical resistivity and earthquake generation in the crust of West Anatolia, Turkey. Tectonophysics 445(1):49–65

    Article  Google Scholar 

  • Haber E, Gazit MH (2013) Model fusion and joint inversion. Surv Geophys 34:675–695

    Article  Google Scholar 

  • Hancock PL, Barka AA (1987) Kinematic indicators on active normal faults in western Turkey. J Struct Geol 9(5/6):573–584

    Article  Google Scholar 

  • Hetzel R, Reischmann T (1996) Intrusion age of Pan-African augen gneisses in the southern Menderes massif and the age of cooling after Alpine ductile extensional deformation. Geol Mag 133:565–572

    Article  Google Scholar 

  • Hetzel R, Passchier CW, Ring U, Dora OÖ (1995a) Bivergent extension in orogenic belts: the Menderes massif, southwestern Turkey. Geology 23:455–458

    Article  Google Scholar 

  • Hetzel R, Ring U, Akal C, Troesch M (1995b) Miocene NNE-directed extensional unroofing in the Menderes massif, southwestern Turkey. J Geol Soc 152:639–654

    Article  Google Scholar 

  • Hetzel R, Zwingmann H, Mulch A, Gessner K, Akal C, Hampel A, Güngör T, Petschick R, Mikes T, Wedin F (2013) Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: a case study from the Menderes Massif, western Turkey. Tectonics 32(3):364–376

    Article  Google Scholar 

  • Isik V, Tekeli O (2001) Structure of lower plate rocks in metamorphic core complex: Northern Menderes Massif, Western Turkey. Int J Earth Sci (Geologische Rundschau) 89:757–765

    Article  Google Scholar 

  • Karabulut H, Paul A, Ergün TA, Hatzfeld D, Childs DM, Aktar M (2013) Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia. Geophys J Int 194(1):450–464

    Article  Google Scholar 

  • Kröner A, Sengör AMC (1990) Archean and Proterozoic ancestry in late Precambrian to early Proterozoic crustal elements of southern Turkey as revealed by single-zircon dating. Geology 18:1186–1190

    Article  Google Scholar 

  • Makris J, Stobbe C (1984) Physical properties and state of the crust and upper mantle of the Eastern Mediterranean Sea deduced from geophysical data. Mar Geol 55:347–363

    Article  Google Scholar 

  • Mutlu AK, Karabulut H (2011) Anisotropic Pn tomography of Turkey and adjacent regions. Geophys J Int 187(3):1743–1758. doi:10.1111/j.1365-246X.2011.05235.x

    Article  Google Scholar 

  • Oberhänsli R, Candan O, Wilke F (2010) Geochronological evidence of Pan-African eclogites from the central Menderes Massif, Turkey. Turk J Earth Sci 19(4):431–447

    Google Scholar 

  • Okay AI (2010) Deep subduction of a passive continental margin: comparison of the Tavsanli zone and Oman. In: Tectonic crossroads: evolving orogens of Eurasia–Africa–Arabia, Ankara, pp 36. https://gsa.confex.com/gsa/2010TU/finalprogram/abstract_175096.htm

  • Okay AI (2011) A regional olistostrome–mélange belt formed along a major strike–slip tear fault: Bornova Flysch Zone, western Turkey. Geophys Res Abstr 13:EGU2011-4689

    Google Scholar 

  • Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horvath E, Seranne M (eds) The Mediterranean basins: tertiary extension within the Alpine orogen, vol 156. Geological Society, Special Publication, London, pp 475–515

  • Oyman T, Minareci F, Piskin O (2003) Efemcukuru B-rich epithermnal gold deposit (Izmir, Turkey). Ore Geol Rev 23(1–2):35–53

    Article  Google Scholar 

  • Özeren MS, Holt WE (2010) The dynamics of the eastern Mediterranean and eastern Turkey. Geophys J Int 183(3):1165–1184. doi:10.1111/j.1365-246X.2010.04819.x

    Article  Google Scholar 

  • Özkaymak C, Sozbilir H (2008) Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turk J Earth Sci 17(3):615–635

    Google Scholar 

  • Peddie NW (1982) International geomagnetic reference field: the third generation. J Geomagn Geoelectr 34(6):309–326

    Article  Google Scholar 

  • Pourteau A, Candan O, Oberhänsli R (2010) High-pressure metasediments in central Turkey: constraints on the Neotethyan closure history. Tectonics 29:TC5004. doi:10.1029/2009tc002650

    Article  Google Scholar 

  • Prelević D, Akal C, Foley S, Romer R, Stracke A, Van Den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Petrol 53(5):1019–1055

    Article  Google Scholar 

  • Purvis M, Robertson A (2005) Miocene sedimentary evolution of the NE–SW-trending Selendi and Gordes basins, W Turkey: implications for extensional processes. Sed Geol 174(1–2):31–62

    Article  Google Scholar 

  • Regnier JL, Ring U, Passchier CW, Gessner K, Gungor T (2003) Contrasting metamorphic evolution of metasedimentary rocks from the Cine and Selimiye nappes in the Anatolide belt, western Turkey. J Metamorph Geol 21(7):699–721

    Article  Google Scholar 

  • Ring U, Collins AS (2005) U–Pb SIMS dating of synkinematic granites: timing of core-complex formation in the northern Anatolide belt of western Turkey. J Geol Soc 162:289–298

    Article  Google Scholar 

  • Ring U, Gessner K, Gungor T, Passchier CW (1999) The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean—do they really correlate? J Geol Soc 156:3–6

    Article  Google Scholar 

  • Ring U, Buchwaldt R, Gessner K (2004) Pb/Pb dating of garnet from the Anatolide Belt in western Turkey; regional implications and speculations on the role Anatolia played during the amalgamation of Gondwana. Zeitschrift der Deutschen Geologischen Gesellschaft 154(4):537–555

    Google Scholar 

  • Salaün G, Pedersen HA, Paul A, Farra V, Karabulut H, Hatzfeld D, Papazachos C, Childs DM, Pequegnat C, Team S (2012) High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure. Geophys J Int 190(1):406–420

    Article  Google Scholar 

  • Saunders P, Priestley KF, Taymaz T (1998) Variations in the crustal structure beneath western Turkey. Geophys J Int 134(2):373–389

    Article  Google Scholar 

  • Schermer ER, Lux DR, Burchfiel BC (1990) Temperature-time history of subducted continental crust, Mount Olympos Region, Greece. Tectonics 9(5):1165–1196

    Article  Google Scholar 

  • Sener AK, Arar M, Wedin F (2009) Contrasting styles of epithermal gold mineralisation at the Kiziltepe and Tavsan deposits, Western Turkey. In: Williams PJ et al. (ed) Smart science for exploration and mining, proceedings of the 10th Biennial meeting of The Society for Geology Applied to Mineral Deposits, Townsville, Australia, 17th–20th August 2009, vol 2, pp 848–850

  • Seyitoglu G, Scott BC (1996) The cause of N–S extensional tectonics in western Turkey: tectonic escape vs back-arc spreading vs orogenic collapse. J Geodyn 22(1–2):145–153

    Article  Google Scholar 

  • Sodoudi F, Kind R, Hatzfeld D, Priestley KF, Hanka W, Wylegalla K, Stavrakakis G, Vafidis A, Harjes H-P, Bohnhoff M (2006) Lithospheric structure of the Aegean obtained from P and S receiver functions. J Geophys Res 111:B12307

    Article  Google Scholar 

  • Sözbilir H, Inci U, Erkül F, Sümer Ö (2003) An active intermittent transform zone accommodating N–S extension in western Anatolia and its relation to the North Anatolian Fault System. In: International workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems Abstracts, vol., p 87

  • Thomson SN, Ring U (2006) Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics 25(3):TC3005. doi:10.1029/2005tc001833

    Article  Google Scholar 

  • Tirel C, Gueydan F, Tiberi C, Brun J-P (2004) Aegean crustal thickness inferred from gravity inversion. Geodynamical implications for enrichment processes in the lithospheric mantle. J Volcanol Geotherm Res 96:127–147

    Google Scholar 

  • Toker CE (2014) Geophysical analysis and modelling of the Simav basin, Western Anatolia. Bull Miner Res Explor 148:119–135

    Google Scholar 

  • Ulugergerli E, Seyitoğlu G, Başokur A, Kaya C, Dikmen U, Candansayar M (2007) The geoelectrical structure of northwestern Anatolia, Turkey. Pure appl Geophys 164(5):999–1026

    Article  Google Scholar 

  • Uzel B, Sozbilir H (2008) A first record of a strike–slip basin in western Anatolia and its tectonic implication: the Cumaovasi basin. Turk J Earth Sci 17(3):559–591

    Google Scholar 

  • Yigit O (2006) Gold in Turkey—a missing link in Tethyan metallogeny. Ore Geol Rev 28:147–179

    Article  Google Scholar 

  • Yigit O (2009) Mineral deposits of Turkey in relation to Tethyan metallogeny: implications for future mineral exploration. Econ Geol 104:19–51

    Article  Google Scholar 

  • Yilmaz H (1981) Genesis of uranium deposits in Neogene sedimetary rocks overlying the Menderes metamorphic massif, Turkey. Chem Geol 31:185–210

    Article  Google Scholar 

  • Yilmaz H, Oyman T, Arehart GB, Colakoglu AR, Billor Z (2007) Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey. Ore Geol Rev 32:81–124

    Article  Google Scholar 

  • Zhu L, Akyol N, Mitchell BJ, Sozbilir H (2006) Seismotectonics of western Turkey from high resolution earthquake relocations and moment tensor determinations. Geophys Res Lett 33(7):L07316. doi:10.1029/2006gl025842

    Article  Google Scholar 

  • Zlatkin O, Avigad D, Gerdes A (2013) Evolution and provenance of Neoproterozoic basement and Lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): coupled U–Pb–Hf zircon isotope geochemistry. Gondwana Res 23(2):682–700

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by Ariana Resources plc. Vanessa Markwitz is thanked for comments of an earlier version; reviews by Nuri Dolmaz and an anonymous reviewer helped to improve the manuscript. Klaus Gessner, now with the Geological Survey of Western Australia, publishes in the role of Adjunct Senior Research Fellow at the Centre for Exploration Targeting, University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Gessner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

Combined PDF file of anomaly curves, geospectral profiles, and magnetization and density distribution profiles for all profiles WTA–WTM (PDF 34721 kb)

Supplement 2

Tabulation of residual mean square (RMS) misfit between actual gravity and magnetic data and best-fit model responses of sections WTA–WTM (DOCX 39 kb)

Supplement 3

Image file of ‘cross plots’ showing the range of magnetization and density values associated with the colour scale used in all geospectral images (PDF 23315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gessner, K., Gallardo, L.A., Wedin, F. et al. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion. Int J Earth Sci (Geol Rundsch) 105, 2133–2148 (2016). https://doi.org/10.1007/s00531-016-1324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1324-1

Keywords

Navigation