International Journal of Earth Sciences

, Volume 106, Issue 1, pp 255–268 | Cite as

Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite–ash–mudstone sequence using K–Ar and 40Ar/39Ar isotopes

  • L. N. Warr
  • H. Hofmann
  • B. A. van der Pluijm
Original Paper


Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid–rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete ~13–17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.


Smectite age dating K–Ar and 40Ar/39Ar isotopes Cretaceous ash Bentonite Tuffaceous mudstone Detrital mica Neuquén Basin Argentina 



Raymond Wendling of the former Centre de la Geochimie de la Surface in Strasbourg (ULP-CNRS) is thanked for K–Ar isotopic analyses and Chris Hall (Uni-Michigan) for 40Ar/39Ar analysis of the mica sample. Manfred Zander's help with the electron microscopy analyses is also acknowledged. The study was supported by the DFG, Wa 803/4-1 (LNW) and the National Science Foundation, EAR-1118704 (BvdP). Georg Grathoff and Peter Vrolijk are thanked for helpful comments on an early version of the manuscript. We also acknowledge the feedback of Masafumi Sudo (Uni-Potsdam) and an anonymous reviewer for their constructive input that led to improvement of this paper.

Supplementary material

531_2016_1315_MOESM1_ESM.xlsx (25 kb)
Supplementary material 1 (XLSX 26 kb)
531_2016_1315_MOESM2_ESM.xlsx (34 kb)
Supplementary material 2 (XLSX 34 kb)
531_2016_1315_MOESM3_ESM.xlsx (150 kb)
Supplementary material 3 (XLSX 151 kb)


  1. Aguirre-Urreta B, Tunik M, Naipauer M, Pazos P, Ottone E, Fanning M, Ramos VA (2011) Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494. doi: 10.1016/ CrossRefGoogle Scholar
  2. Alt JC, France-Lanord C, Floyd PA, Paterno C, Galy A (1992) Low-temperature hydrothermal alteration of Jurassic ocean crust, Site 801. In: Larson R, Lancelot Y et al (eds) Proceedings of the ocean drilling program, scientific results, College Station, TX (Ocean Drilling Program), vol 129, pp 415–427. doi: 10.2973/
  3. April RH (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley. Clays Clay Miner 29:31–39. doi: 10.1346/CCMN.1981.0290105 CrossRefGoogle Scholar
  4. Aronson JL, Douthitt CB (1986) K/Ar systematic of an acid-treated illite/smectite: implications for evaluating age and crystal structure. Clays Clay Miner 34:473–482. doi: 10.1346/ccmn.1986.0340414 CrossRefGoogle Scholar
  5. Bechtel A, Elliott WC, Wampler JM, Oszczepalski S (1999) Clay mineralogy, crystallinity, and K–Ar ages of illites within the Polish Zechstein Basin; implications for the age of Kupferschiefer mineralization. Econ Geol 94:261–272. doi: 10.2113/gsecongeo.94.2.261 CrossRefGoogle Scholar
  6. Bergaya F, Lagaly G, Vayer M (2006) Cation and anion exchange. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, Amsterdam, pp 979–1001. doi: 10.1016/S1572-4352(05)01036-6 Google Scholar
  7. Bonhomme MG, Thuizat R, Pinault Y, Clauer N, Wendling R, Winkler R (1975) Methode de datation potassium—argon. Appareillage et Technique (The potassium—argon dating method). Notes technique de l’Institut de Géologie, Université Louis Pasteur, Strasbourg, 3, 53 ppGoogle Scholar
  8. Chipera SJ, Bish DL (2001) Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays Clay Miner 49:398–409. doi: 10.1346/CCMN.2001.0490507 CrossRefGoogle Scholar
  9. Christidis GE (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays Clay Miner 49:204–215. doi: 10.1346/ccmn.2001.0490303 CrossRefGoogle Scholar
  10. Christidis GE, Huff WD (2009) Geological aspects and genesis of bentonites. Elements 5:93–98. doi: 10.2113/gselements.5.2.93 CrossRefGoogle Scholar
  11. Clauer N (2013) The K–Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chem Geol 354:163–185. doi: 10.1016/j.chemgeo.2013.05.030 CrossRefGoogle Scholar
  12. Clauer N, Giblin P, Lucas J (1984) Sr and Ar isotope studies of detrital smectite from the Atlantic ocean (D.S.D.P., Legs 43, 48 and 50). Isot Geosci 2:141–151. doi: 10.1016/0009-2541(84)90185-2 Google Scholar
  13. Clauer N, Zwingmann H, Liewig N, Wendling R (2012) Comparative 40Ar/39 Ar and K–Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences. Earth Sci Rev 115:76–96. doi: 10.1016/j.earscirev.2012.07.003 CrossRefGoogle Scholar
  14. Dalrymple GB, Lanphere MA (1969) Potassium—argon dating. Freeman, San FranciscoGoogle Scholar
  15. Gasparini Z, Casadio S, Fernàndez M, Salgodo L (2001) Marine reptiles from the Late Cretaceous of northern Patagonia. J South Am Earth Sci 14:51–60. doi: 10.1016/S0895-9811(01)00012-8 CrossRefGoogle Scholar
  16. Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge University Press, Cambridge. doi: 10.1017/s001675680521141x Google Scholar
  17. Grathoff G, Moore D (1996) Illite polytype quantification using WILDFIRE—calculated patterns. Clays Clay Miner 44:835–842. doi: 10.1346/ccmn.1996.0440615 CrossRefGoogle Scholar
  18. Haines SH, van der Pluijm BA (2008) Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. J Struct Geol 30:525–538. doi: 10.1016/j.jsg.2007.11.012 CrossRefGoogle Scholar
  19. Harrington JF, Horseman ST (1999) Gas transport properties of clays and mudrocks. In: Aplin AC, Fleet AJ, Macquaker JHS (eds) Muds and mudstones: physical and fluid flow properties. Geol Soc Lond Spec Publ 158:107–124. doi: 10.1144/gsl.sp.1999.158.01.09
  20. Hassanipak AA, Wampler JM (1996) Radiogenic argon released by stepwise heating of glauconite and illite: the influence of composition and particle size. Clays Clay Miner 44:717–726. doi: 10.1346/ccmn.1996.0440601 CrossRefGoogle Scholar
  21. Hay RL, Gludman SG (1987) Diagenetic alteration of silicic ash in Searles Lake, California. Clays Clay Miner 35:449–457. doi: 10.1346/ccmn.1987.0350605 CrossRefGoogle Scholar
  22. Hazen RM, Sverjensky DA, Azzolini D, Bish D, Elmore SC, Hinnov L, Milliken RE (2013) Clay mineral evolution. Am Mineral 98:2007–2029. doi: 10.2138/am.2013.4425 CrossRefGoogle Scholar
  23. Hofmann H (2003) Einfluss konzentrierter Salzlösungen auf die physiko-chemischen Eigenschaften quellfähiger Tonminerale: Konsequenzen für den Einsatz von Bentonit als Versatzmaterial in einem Endlager für schwach- und mittelradioaktive Abfälle in Salzformationen. Dissertation of the University of Heidelberg, 140 ppGoogle Scholar
  24. Hofmann H, Bauer A, Warr LN (2002) XCharge—ein Programm zur Berechnung der Schichtladung und Schichtladungsverteilung niedrig geladener Phyllosilikate mit Hilfe der Alkylammonium-Methode: Grundlagen und Benutzerhandbuch. Band 6744 von Forschungszentrum Karlsruhe Technik und Umwelt, Wissenschaftliche Berichte, 25 ppGoogle Scholar
  25. Horseman ST, Harrington JF, Sellin P (1999) Gas migration in clay barriers. Eng Geol 54:139–149. doi: 10.1016/S0013-7952(99)00069-1 CrossRefGoogle Scholar
  26. Howell JA, Schwarz E, Spalletti L, Veiga GD (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geol Soc Lond Spec Publ 252:1–14. doi: 10.1144/gsl.sp.2005.252.01.01
  27. Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehming W, Hochstrasser K, Roggwiller P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180. doi: 10.1007/BF00375291 CrossRefGoogle Scholar
  28. Iborra CV, Cultrone G, Cerezo P, Aguzzi C, Baschini MT, Vallés J, López-Galindo A (2006) Characterisation of northern Patagonian bentonites for pharmaceutical uses. Appl Clay Sci 31:272–281. doi: 10.1016/j.clay.2005.11.002 CrossRefGoogle Scholar
  29. Impiccini A (1995) Mineralogía de la fracción no arcillosa de las bentonitas del Cretácico superior de la región Norpatagonia. PhD thesis, Univ. Nac. La PlataGoogle Scholar
  30. Janssen C, Wirth R, Lin A, Dresen G (2013) TEM microstructural analysis in a fault gouge sample of the Nojima Fault Zone, Japan. Tectonophysics 583:101–104. doi: 10.1016/j.tecto.2012.10.020 CrossRefGoogle Scholar
  31. Kim J, Peacor DR, Tessier D, Elsass F (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner 43:51–57. doi: 10.1346/ccmn.1995.0430106 CrossRefGoogle Scholar
  32. Lagaly G (1994) Layer charge determination by alkylammonium ions. In: Mermut AR (ed) Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures. Clay Min Soc 6:1–46. doi: 10.1346/cms-wls-6.1
  33. Lagaly G, Weiss A (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen. Teil IV: Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten. Kolloid Z Z Polym 243:48–55. doi: 10.1007/bf01500614 CrossRefGoogle Scholar
  34. LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750. doi: 10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  35. Lehikoinen J, Carlsson J, Muurinen A, Olin M, Salonen P (1996) Evaluation of factors affecting diffusion in compacted bentonite. Mater Res Soc Symp Proc 412:675–682. doi: 10.1557/proc-412-675 CrossRefGoogle Scholar
  36. LoBello P, Feraud G, Hall CM, York D, Lavina P, Bernat M (1987) 40Ar/39Ar step-heating and laser fusion dating of a quaternary volcanic from Neschers, Massif Central, France: the defeat of xenocrystic contamination. Chem Geol 66:61–71. doi: 10.1016/0168-9622(87)90029-7 Google Scholar
  37. Lombardi B, Baschini M, Torres-Sánchez RM (2003) Bentonite deposits of northern Patagonia. Appl Clay Sci 22:309–312. doi: 10.1016/j.clay.2005.11.002 CrossRefGoogle Scholar
  38. Mahon K (1996) The new “York” regression; application of an improved statistical method to geochemistry. Int Geol Rev 38:293–303. doi: 10.1080/00206819709465336 CrossRefGoogle Scholar
  39. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, Oxford. doi: 10.1093/petrology/41.12.1823 Google Scholar
  40. Mermut AR, Lagaly G (2001) Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner 49:393–397. doi: 10.1346/ccmn.2001.0490506 CrossRefGoogle Scholar
  41. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, Oxford. doi: 10.1017/s0016756898501501 Google Scholar
  42. Musso TB, Roehl KE, Pettinari G, Vallés JM (2010) Assessment of smectite-rich claystones from North Patagonia for their use as liner materials in landfills. Appl Clay Sci 48:438–445. doi: 10.1016/j.clay.2010.02.001 CrossRefGoogle Scholar
  43. Nauman TE, Crawford Elliott W, Wampler JM (2012) K–Ar age constraints on the origin of micaceous minerals in Savannah River Site Soils, South Carolina, USA. Clays Clay Miner Minerals 60:496–506. doi: 10.1346/ccmn.2012.0600506 CrossRefGoogle Scholar
  44. Odin GS (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 123–149. doi: 10.1016/1359-0189(90)90126-i Google Scholar
  45. Odin GS, Bonhomme MG (1982) Argon behaviour in clays and glauconies during preheating experiments. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 333–343Google Scholar
  46. Pevear DR (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka YK, Maest AS (eds) Proceedings of the 7th international symposium on water-rock interaction. Balkema, Rotterdam, Netherlands, pp 1251–1254Google Scholar
  47. Smith JV, Yoder HS Jr (1956) Experimental and theoretical studies of the mica polymorphs. Mineral Mag 31:209–331. doi: 10.1180/minmag.1956.031.234.03 CrossRefGoogle Scholar
  48. Solum JG, van der Pluijm BA, Peacor DR, Warr LN (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res Solid Earth 108(B5):2233. doi: 10.1029/2002JB001858 CrossRefGoogle Scholar
  49. Środoń J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner 34:368–378. doi: 10.1346/ccmn.1986.0340403 CrossRefGoogle Scholar
  50. Szczerba M, Środoń J (2009) Extraction of diagenetic and detrital ages and of the 40Kdetrital/40Kdiagenetic ratio from K–Ar dates of clay fraction. Clays Clay Miner 57:93–103. doi: 10.1346/ccmn.2009.0570109 CrossRefGoogle Scholar
  51. Turner RJW, Ames DE, Franklin JM, Goodfellow WD, Leitch CHB, Höy T (1993) Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, Northern Juan de Fuca Ridge: data on shallow cores. Can Miner 31:973–999. doi: 10.4095/132633 Google Scholar
  52. Vallés JM, Giusiano A (2001) Bentonitic and kaolin deposits in extra-Andean Patagonia and soils in the Andean region. Post-conference field excursion July 29–August 1st, 2001. In: The 12th international clay conference, Universida Nacional de sur Bahia Blanca- Argentina, 59 ppGoogle Scholar
  53. Vallés JM, Burlando L, Chiachiarini P, Giaveno M, Impiccini A (1989) Geological and genetical features of the Upper Cretaceous bentonite deposit from North Patagonia. PICG, 24, Cretácico América Latina, Buenos Aires, pp 79–98Google Scholar
  54. van der Pluijm B, Hall C, Vrolijk P, Pevear D, Covey M (2001) The dating of shallow faults in the Earth’s crust. Nature 412:172–175. doi: 10.1038/35084053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. N. Warr
    • 1
  • H. Hofmann
    • 2
  • B. A. van der Pluijm
    • 3
  1. 1.Institute of Geography and GeologyErnst-Moritz-Arndt-University GreifswaldGreifswaldGermany
  2. 2.LörrachGermany
  3. 3.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations