Advertisement

International Journal of Earth Sciences

, Volume 105, Issue 8, pp 2221–2239 | Cite as

Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

  • Óscar Pueyo Anchuela
  • Paloma Lafuente
  • Luis Arlegui
  • Carlos L. Liesa
  • José L. Simón
Original Paper
  • 346 Downloads

Abstract

The Concud Fault is a ~14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

Keywords

Active fault Seismic hazard Geophysical survey Magnetometry EM induction GPR Trench 

Notes

Acknowledgments

This research has been financed by projects CGL2012-35662 and CGL2009-13390 of Spanish Ministerio de Ciencia e Innovación-FEDER, as well as by the Aragón regional government (Geotransfer research group) and a PHD grant (FPI-DGA) for Paloma Lafuente. Authors want to acknowledge comments, suggestions and ideas by Rich D. Koehler, Paula M. Figuereido and an anonymous reviewer during manuscript revision.

References

  1. Alcalá L, Alonso-Zarza AM, Álvarez MA, Azanza B, Calvo JP, Cañaveras JC, van Dam JA, Garcés M, Krijgsman W, van der Meulen AJ, Morales J, Peláez P, Pérez-González A, Sánchez S, Sancho R, Sanz E (2000) El registro sedimentario y faunístico de las cuencas de Calatayud-Daroca y Teruel. Evolución paleoambiental y paleoclimática durante el Neógeno. Rev Soc Geol España 13:323–343Google Scholar
  2. Álvaro M, Capote R, Vegas R (1979) Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geol Hisp 14:172–177Google Scholar
  3. Annan AP (2004) Ground penetrating radar: principles, procedures and applications. Sensors and Software INC. Mississauga, Canada 239 p Google Scholar
  4. Arlegui LE, Simón JL, Lisle RJ, Orife T (2005) Late Pliocene-Pleistocene stress field in the Teruel and Jiloca grabens (eastern Spain): contribution of a new method of stress inversion. J Struct Geol 27:693–705CrossRefGoogle Scholar
  5. Benson AK, Mustoe NB (1995) Analyzing shallow faulting at a site in the Wasatch fault zone, Utah, USA, by integrting seismic, gravity, magnetic and trench data. Eng Geol 40:139–156CrossRefGoogle Scholar
  6. Demanet D, Evers LG, Teerlynck H, Dost B, Jongmans D (2001a) Geophysical investigation across the peel boundary fault (The Netherlands) for a paleoseismological study. Geol Mijnbouw 80(3–4):119–127Google Scholar
  7. Demanet D, Renardy F, Vanneste K, Jongmans D, Camelbeeck T, Meghraoui M (2001b) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66:78–89CrossRefGoogle Scholar
  8. Dujardin JR, Bano M, Schlupp A, Ferry M, Munkhuu U, Tsend-Ayush N, Enkhee B (2014) GPR measurements to assess the Emeelt active fault’s characteristics in a highly smooth topographic context Mongolia. Geophys J Int 198:174–186CrossRefGoogle Scholar
  9. Ezquerro L, Moretti M, Liesa CL, Luzón A, Simón JL (2015) Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics 655:191–205CrossRefGoogle Scholar
  10. Fischer T, Štěpančíková P, Karousová M, Tábořík P, Flechsig C, Gaballah M (2012) Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography. Stud Geophys Geod 56:1019–1036CrossRefGoogle Scholar
  11. García Lacosta AI, Pueyo Ó, Arlegui LE, Ezquerro L, Liesa CL, Simón JL (2014) La falla reciente de Sierra Palomera (fosa del Jiloca, Cordillera Ibérica): contribución de la prospección geofísica a la caracterización estructural. 2ª Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, España. p 51–54Google Scholar
  12. Godoy A, Olivé A, Moissenet E, Gutiérrez M, Aguilar MJ, Ramírez J, Aragonés E, Giner J, Portero JM (1983a) Mapa Geológico de España 1: 50.000, hoja nº 590 (La Puebla de Valverde). IGME, MadridGoogle Scholar
  13. Godoy A, Ramírez JI, Olivé A, Moissenet E, Aznar JM, Aragonés E, Aguilar MJ, Alberdi MT, Giner J, Gutiérrez Elorza M, Portero JM, Gabaldón V (1983b) Mapa Geológico de España 1:50.000, hoja nº 567 (Teruel). IGME, MadridGoogle Scholar
  14. Gutiérrez F, Gutiérrez M, Gracia FJ, McCalpin JP, Lucha P, Guerrero J (2008) Plio-Quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Range (NE Spain). Geomorphology 102:21–42CrossRefGoogle Scholar
  15. Gwendolyn P, Buchmann TJ, Connolly P, Van Balen RT, Wenzel F, Cloetingh SAPL (2005) Interplay between tectonic, fluvial and erosional processes along the Western Border Fault of the northern Upper Rhine Graben, Germany. Tectonophysics 406:39–66CrossRefGoogle Scholar
  16. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350. doi: 10.1029/JB084iB05p02348 CrossRefGoogle Scholar
  17. Hartvich F, Valenta J (2011) The identification of faults using morphostructural and geophysical methods: a case study from Strasin Cave site. Acta Geodyn Geomater 8(164):425–441Google Scholar
  18. Huang H (2005) Depth of investigation for small broadband electromagnetic sensors. Geophysics 70(6):G135–G142CrossRefGoogle Scholar
  19. Huang H, Won IJ (2000) Conductivity and susceptibility mapping using broadband electromagnetic sensors. J Environ Eng Geophys 5(4):31–41CrossRefGoogle Scholar
  20. IGN (2010) Servicio de información sísmica del instituto geográfico nacional. http://www.ign.es/ign/es/IGN/SisCatalogo.jsp
  21. Khan SD, Stewart RR, Otoum M, Chang L (2013) A geophysical investigation of the active Hockley Fault system near Houston Texas. Geophysics 78(4):B177–B185CrossRefGoogle Scholar
  22. Khesin B (2004) Use of geophysical methods for the solution of environmental problems in Israel. HAIT J Sci Eng B 2(1–2):95–124Google Scholar
  23. Lafuente P, Rodríguez-Pascua MA, Simón JL, Arlegui LE, Liesa CL (2008) Sismitas en depósitos pliocenos y pleistocenos de la fosa de Teruel. Rev Soc Geol España 21:133–149Google Scholar
  24. Lafuente P, Arlegui LE, Liesa CL, Simón JL (2011) Paleoseismological analysis of an intraplate extensional structure: the Concud fault (Iberian Chain, Spain). Int J Earth Sci 100:1713–1732CrossRefGoogle Scholar
  25. Lafuente P, Arlegui LE, Liesa CL, Simón JL (2012) Reply to the discussion by F. Gutiérrez, P. Lucha, J. Guerrero, M. Gutiérrez and D. Carbonel on the article ‘paleoseismological analysis of an intraplate extensional structure: the Concud fault (Iberian Chain, eastern Spain)’. Int J Earth Sci 101(2):587–594CrossRefGoogle Scholar
  26. Lafuente P, Arlegui LE, Liesa CL, Pueyo Ó, Simón JL (2014) Spatial and temporal variation of palaeoseismic activity at an intraplate, historically quiescent structure: the Concud fault (Iberian Chain, Spain). Tectonophysics 632:167–187CrossRefGoogle Scholar
  27. Louis IF, Raftopoulos D, Goulis I, Louis FI (2002) Geophysical imaging of faults and fault zones in the urban complex of Ano Liosia Neogene Basin, Greece: synthetic simulation approach and field investigations. J Electr Electron Eng Spec Issue Oct 2002:269–285Google Scholar
  28. Martín Bello L, Arlegui LE, Ezquerro L, Liesa CL, Simón JL (2014) La falla de Calamocha (fosa del Jiloca, Cordillera Ibérica): estructura y actividad pleistocena. 2ª Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, España pp 55–58Google Scholar
  29. McBride JH, Stephenson WJ (2003) Preface to contributions to neotectonics and seismic hazard from shallow geophysical imaging. Spec Vol Tectonophys 368:1–5CrossRefGoogle Scholar
  30. McCalpin JP (2005) Late Quaternary activity of the Pajarito fault, Rio Grande rift of northern New Mexico, USA. Tectonophysics 408:213–236CrossRefGoogle Scholar
  31. Nguyen F, Garambois S, Chardon D, Hermitte D, Bellier O, Jongmans D (2007) Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence France. J Appl Geophys 62:338–353CrossRefGoogle Scholar
  32. Opdyke N, Mein P, Lindsay E, Pérez-González A, Moissenet E, Norton VL (1997) Continental deposits, magnetostratigraphy and vertebrate paleontology, late neogene of Eastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 133:129–148CrossRefGoogle Scholar
  33. Pavlides S, Caputo R (2004) Magnitude versus faultś surface parameters: quantitative relationships from the Aegean Region. Tectonophysics 380:159–188CrossRefGoogle Scholar
  34. Powell JW (1873) Geological structure of a district of country lying to the north of the Grand Canyon of the Colorado. Am J Sci 5:456–465CrossRefGoogle Scholar
  35. Roca E, Guimerà J (1992) The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 203:203–218CrossRefGoogle Scholar
  36. Rubio JC, Simón JL (2007) Tectonic subsidence v. erosional lowering in a controversial intramontane depression: the Jiloca basin (Iberian Chain, Spain). Geol Magazine 144:1–15CrossRefGoogle Scholar
  37. Simón JL (1982) Compresión y distensión alpinas en la Cadena Ibérica Oriental. Tesis Doct. Universidad de Zaragoza. Publ. Instituto de Estudios Turolenses, Teruel (1984)Google Scholar
  38. Simón JL (1983) Tectónica y neotectónica del sistema de fosas de Teruel. Teruel 69:21–97Google Scholar
  39. Simón JL, Arlegui LE, Lafuente P, Liesa CL (2012) Active extensional faults in the central-eastern Iberian chain Spain. J Iber Geol 38(1):127–144CrossRefGoogle Scholar
  40. Simón JL, Arlegui LE, Ezquerro L, Lafuente P, Liesa CL, Luzón A (2015) Enhanced paleoseismic succession at the Concud fault (Iberian Chain Spain) New insights for seismic hazard assessment. Nat Hazards. doi: 10.1007/s11069-015-2054-6 Google Scholar
  41. Štěpančíková P, Dohnal J, Pánek T, Loj M, Smolková V, Silhán K (2011) The application of electrical resistivity tomography and gravimetric survey as useful tools in an active tectonics study of the Sudetic Marginal Fault (Bohemian Massif, central Europe). J Appl Geophys 74:69–80CrossRefGoogle Scholar
  42. Stirling M, Rhoades D, Berryman K (2002) Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era. Bull Seism Soc Am 92:812–830CrossRefGoogle Scholar
  43. Suski B, Brocard G, Authemayou C, Consenza Muralles B, Teyssier C, Klaus Holliger K (2010) Localization and characterization of an active fault in an urbanized area in central Guatemala by means of geoelectrical imaging. Tectonophysics 480:88–98CrossRefGoogle Scholar
  44. Suzuki K, Toda S, Kusunoki K, Fujimitsu Y, Mogi T, Jomori A (2000) Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary. Eng Geol 56:29–45CrossRefGoogle Scholar
  45. Vanneste K, Verbeeck K, Petermans T (2008) Pseudo-3D imaging of a low-slip-rate, active normal fault using shallow geophysical methods: the Geleen fault in the Belgian Maas River valley. Geophysics 73(1):B1–B9. doi: 10.1190/1.2816428 CrossRefGoogle Scholar
  46. Vegas R, Fontboté JM, Banda E (1979) Widespread Neogene rifting superimposed on alpine regions of the Iberian Peninsula. In: Proceedings symposium evolution and tectonics of the Western Mediterranean and surrounding areas, EGS, Viena. Instituto Geográfico Nacional, Madrid, Special Publication 201, pp 109–128Google Scholar
  47. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seism Soc Am 84:974–1002Google Scholar
  48. Wise DJ, Cassidy J, Locke CA (2003) Geophysical imaging of the quaternary Wairoa North Fault, New Zealand: a case study. J Appl Geophys 53:1–16CrossRefGoogle Scholar
  49. Wyatt DE, Waddell MG, Sexton GB (1996) Geophysics and shallow faults in unconsolidated sediments. Ground Water 34(2):326–334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Óscar Pueyo Anchuela
    • 1
    • 2
  • Paloma Lafuente
    • 1
  • Luis Arlegui
    • 1
  • Carlos L. Liesa
    • 1
  • José L. Simón
    • 1
  1. 1.Departamento de Ciencias de la TierraUniversidad de ZaragozaZaragozaSpain
  2. 2.Centro Uned-CalatayudCalatayud, ZaragozaSpain

Personalised recommendations