Skip to main content

Advertisement

Log in

Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Regional aeromagnetic data from the south-central Zimbabwe Craton have been digitally processed and enhanced for geological and structural mapping and tectonic interpretation integrated with gravity data, to constrain previous interpretations based on tentative geologic maps and provide new information to link these structural features to known tectonic events. The derived maps show excellent correlation between magnetic anomalies and the known geology, and extend lithological and structural mapping to the shallow/near subsurface. In particular, they reveal the presence of discrete crustal domains and several previously unrecognised dykes, faults, and ultramafic intrusions, as well as extensions to others. Five regional structural directions (ENE, NNE, NNW, NW, and WNW) are identified and associated with trends of geological units and cross-cutting structures. The magnetic lineament patterns cut across the >2.7 Ga greenstone belts, which are shown by gravity data to be restricted to the uppermost 10 km of the crust. Therefore, the greenstone belts were an integral part of the lithosphere before much of the upper crustal (brittle) deformation occurred. Significantly, the observed magnetic trends have representatives craton-wide, implying that our interpretation and inferences can be applied to the rest of the craton with confidence. Geological–tectonic correlation suggests that the interpreted regional trends are mainly 2.5 Ga (Great Dyke age) and younger, and relate to tectonic events including the reactivation of the Limpopo Belt at 2.0 Ga and the major regional igneous/dyking events at 1.8–2.0 Ga (Mashonaland), 1.1 Ga (Umkondo), and 180 Ma (Karoo). Thus, their origin is here inferred to be inter- and intra-cratonic collisions and block movements involving the Zimbabwe and Kaapvaal Cratons and the Limpopo Belt, and later lithospheric heating and extension associated with the break-up of Gondwana. The movements produced structures, or reactivated older fractures, that were exploited by Late Archaean and Proterozoic mafic intrusions. There was interplay between vertical and horizontal tectonics as seen in similar terrains worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AFTT:

Apatite fission-track thermochronology

BIF:

Banded iron formation

BKD:

Botswana Karoo dyke (swarm)

BGS:

Botswana geological survey

CGS:

Council for geosciences (South Africa)

CZ:

Central zone (Limpopo Belt)

ED:

East dyke

FRD:

Fort Rixon dykes

GD:

The Great Dyke

KC:

Kaapvaal craton

LB:

Limpopo belt

MCD:

Mashava-Chivi dykes

NLTZ:

North limpopo thrust zone

NMZ:

North marginal zone (Limpopo Belt)

SMZ:

South marginal zone (Limpopo Belt)

SPD:

Sebanga Poort dyke

UD:

Umvimeela dyke

ZC:

Zimbabwe Craton

ZGS:

Zimbabwe geological survey

References

  • Airo M-L (2002) Aeromagnetic and aeroradiometric response to hydrothermal alteration. Surv Geophys 23:273–302

    Article  Google Scholar 

  • Aitken ARA, Betts PG (2009) Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: an example from the eastern Musgrave Province Central Australia. Tectonophysics 476(3–4):418–435

    Article  Google Scholar 

  • Aitken ARA, Betts PG, Schaefer BF, Rye SE (2008) Assessing uncertainty in the integration of aeromagnetic data and structural observations in the Deering Hills region of the Musgrave Province. Aust J Earth Sci 55(8):1127–1138

    Article  Google Scholar 

  • Allek K, Hamoudi M (2008) Regional-scale aeromagnetic survey of the south-west of Algeria: a tool for area selection for diamond exploration. J Afr Earth Sci 50:67–78

    Article  Google Scholar 

  • Barritt SD (1993) The African magnetic mapping project. ITC J 1993–2:122–131

    Google Scholar 

  • Barton JM Jr, Holzer L, Kamber B, Doig R, Kramers JD, Nyfeler D (1994) Discrete metamorphic events in the Limpopo belt, southern Africa: implications for the application of P–T paths in complex metamorphic terrains. Geology 22:1035–1038

    Article  Google Scholar 

  • Bates MP, Mushayandebvu MF (1995) Magnetic fabric in the Umvimeela Dyke, satellite of the Great Dyke, Zimbabwe. Tectonophysics 242:241–254

    Article  Google Scholar 

  • Bauer K, Trumbull RB, Vietor T (2003) Geophysical images and a crustal model of intrusive structures beneath the Messum ring complex Namibia. Earth Planet Sci Lett 216(1/2):65–80

    Article  Google Scholar 

  • Becker JK, Siegesmund S, Jelsma H (2000) The Chinamora batholith, Zimbabwe: structure and emplacement-related magnetic rock fabric. J Struct Geol 22:1837–1853

    Article  Google Scholar 

  • Belton DX, Raab MJ (2010) Cretaceous reactivation and intensified erosion in the Archean-Proterozoic Limpopo Belt, demonstrated by apatite fission track thermochronology. Tectonophysics 480:99–108

    Article  Google Scholar 

  • Betts PG, Valenta R, Finlay J (2003) Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: an integrated structural and aeromagnetic analysis. Tectonophysics 366:83–111

    Article  Google Scholar 

  • Betts PG, Williams H, Stewart J, Ailleres L (2007) Kinematic analysis of aeromagnetic data: looking at geophysical data in a structural context. Gondwana Res 11:582–583

    Article  Google Scholar 

  • Bickle MJ, Nisbet EG (eds) (1993) The geology of the Belingwe greenstone belt, Zimbabwe: a study of the evolution of Archaean continental crust. Geological Society of Zimbabwe Special Publication 2. A. A. Balkema, Rotterdam, p 239

    Google Scholar 

  • Bickle MJ, Nisbet EG, Martin A (1994) Archean greenstone belts are not oceanic crust. J Geol 102:121–138

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, p 441

    Book  Google Scholar 

  • Blenkinsop TG (2011) Archean magmatic granulites, diapirism, and Proterozoic reworking in the Northern Marginal Zone of the Limpopo Belt. Geol Soc Am Mem 207:1–24

    Article  Google Scholar 

  • Blenkinsop TG, Treloar PJ (1995) Geometry, classification and kinematics of SC and SC′ fabrics in the Mushandike area Zimbabwe. J Struct Geol 17(3):397–408

    Article  Google Scholar 

  • Blenkinsop TG, Mkweli S, Rollinson HR, Fedo CM, Paya BK, Kamber BS, Kramers JD, Berger M (1995) The North Limpopo Thrust Zone (NLTZ): the northern boundary of the Limpopo belt in Zimbabwe and Botswana. Ext Abstr Geol Soc S Afr Centen Geocongress 95:174–177

    Google Scholar 

  • Blenkinsop TG, Martin A, Jelsma HA, Vinyu ML (1997) The Zimbabwe Craton. In: de Wit MJ, Ashwal LD (eds) Greenstone Belts. Oxford monograph on geology and geophysics, Oxford University Press, Oxford, pp 567–580

    Google Scholar 

  • Blenkinsop TG, Kroner A, Chiwara V (2004) Single stage, late Archaean exhumation of granulites in the Northern Marginal Zone, Limpopo Belt, Zimbabwe, and relevance to gold mineralization at Renco Mine. S Afr J Geol 107:377–396

    Article  Google Scholar 

  • Bolhar R, Woodhead JD, Hergt JM (2003) Continental setting inferred for emplacement of the 2.9–2.7 Ga Belingwe Greenstone Belt, Zimbabwe. Geology 31: 295–298. (Comment and Reply; e30–e31)

  • Boshoff R, Van Reenen DD, Smit CA, Perchuk LL, Kramers JD, Armstrong R (2006) Geologic history of the Central Zone of the Limpopo Complex: the West Alldays Area. J Geol 114:699–716

    Article  Google Scholar 

  • Broome HJ (1990) Generation and interpretation of geophysical images with examples from the Rae Province, northwestern Canada Shield. Geophysics 55:977–997

    Article  Google Scholar 

  • Bumby AJ, Eriksson PG, Van Der Merwe R (2004) The early Proterozoic sedimentary record in the Blouberg area, Limpopo Province, South Africa: implications for the timing of the Limpopo orogenic event. J Afr Earth Sci 39:123–131

    Article  Google Scholar 

  • Campbell SDG, Pitfield PEJ (1994) Structural controls of gold mineralization in the Zimbabwe Craton- Exploration Guidelines. Zimbabwe Geological Survey Bulletin 101, Harare, pp 270

  • Campbell SDG, Oesterlen PM, Blenkinsop TG, Pitfield PEJ, Munyanyiwa H (1992) A Provisional 1:2 500 000 scale Tectonic map and the tectonic evolution of Zimbabwe. Ann Zimb Geol Surv XVI 1991:31–50

    Google Scholar 

  • Carmichael RS (1982) Magnetic properties of minerals and rocks. In: Carmichael RS (ed) Handbook of Physical Properties of Rocks, vol 2. CRC Press, Boca Raton, pp 230–287

    Google Scholar 

  • Carruthers RM, Greenbaum D, Jackson PD, Mtetwa S, Peart RJ, Shedlock SL (1993) Geological and geophysical characterisation of lineaments in southeast Zimbabwe and implications for groundwater exploration. Final Report, Technical Report WC/93/7, British Geological Survey, Keyworth, pp 234

  • Clark DA (1997) Magnetic petrophysics and magnetic petrology; aids to geological interpretation of magnetic surveys. J Aust Geol Geophys 17:83–103

    Google Scholar 

  • Clark DA, Emerson DW (1991) Notes on rock magnetization characteristics in applied geophysical studies. Explor Geophys 22:547–555

    Article  Google Scholar 

  • Cooper GRJ, Cowan DR (2007) Enhancing linear features in image data using horizontal orthogonal gradient ratios. Comput Geosci 33:981–984

    Article  Google Scholar 

  • Coward MP, Ries AC (eds) (1995) Early precambrian processes, vol 95. Geological Society Special Publication, London, p 295

    Google Scholar 

  • Coward MP, James PR, Wright L (1976) Northern margin of the Limpopo mobile belt, southern Africa. Geol Soc Am Bull 87:601–611

    Article  Google Scholar 

  • de Beer JH, Stettler EH (1992) The deep structure of the Limpopo Belt from geophysical studies. Precambr Res 55:173–186

    Article  Google Scholar 

  • De Wit MJ, Roering C, Hart RJ, Armstrong RA, De Ronde CEJ, Green RWE, Tredoux M, Peperdy E, Hart RA (1992) Formation of an archaean continent. Nature 357:553–562

    Article  Google Scholar 

  • Dirks PHGM, Jelsma HA (1998) Horizontal accretion and stabilization of the Archean Zimbabwe Craton. Geology 26(1):11–14

    Article  Google Scholar 

  • Dirks PHGM, Jelsma HA (2002) Crust-mantle decoupling and the growth of the Archaean Zimbabwe craton. J Afr Earth Sci 34:157–166

    Article  Google Scholar 

  • Dirks PHGM, Jelsma HA, Hofmann A (2002) Accretion of an Archaean greenstone belt in the Midlands of Zimbabwe. J Struct Geol 24:1707–1727

    Article  Google Scholar 

  • Dodson MH, Williams IS, Kramers JD (2001) The Mushandike granite: further evidence for 3.4 Ga magmatism in the Zimbabwe craton. Geol Mag 138:31–38

    Article  Google Scholar 

  • Duncan R, Hooper P, Rehacek J, March J, Duncan A (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J Geophys Res 102:18127–18138

    Article  Google Scholar 

  • Durrheim RJ, Barker WH, Green RWE (1992) Seismic studies in the Limpopo belt. Precambr Res 55:187–200

    Article  Google Scholar 

  • Fedo CM, Errikson KA (1996) Stratigraphic framework of the ~3.0 Ga Buhwa Greenstone Belt: a unique stable-shelf succession in the Zimbabwe Archaean Craton. Precambr Res 77:161–178

    Article  Google Scholar 

  • Fedo CM, Eriksson K, Blenkinsop TG (1995) Geologic history of the Archean Buhwa Greenstone Belt and surrounding granite-gneiss terrane, Zimbabwe, with implications for the evolution of the Limpopo Belt. Can J Earth Sci 32:1977–1990

    Article  Google Scholar 

  • Ferraccioli F, Jones PC, Curtis ML, Leat PT, Riley TR (2005) Tectonic and magmatic patterns in the Jutulstraumen rift(?) region, East Antarctica, as imaged by high-resolution aeromagnetic data. Earth Planets Space 57:767–780

    Article  Google Scholar 

  • Frei R, Blenkinsop TG, Schönberg R (1999) Geochronology of the late Archaean Razi and Chilimanzi suites of granites in Zimbabwe: implications for the late Archaean tectonics of the Limpopo belt and Zimbabwe craton. S Afr J Geol 102:55–63

    Google Scholar 

  • Geosoft (2004) Oasis Montaj (V5.1.8) and Euler 3D Deconvolution System (V5.1.5) manuals. Geosoft Inc., Toronto, Canada

  • Gibson RI, Millegan PS (eds) (1998) Geologic Applications of Gravity and Magnetics: Case Histories. Society of Exploration Geophysicists, Geophysical Reference Series 8, pp 162

  • Gore J, James DE, Zengeni TG, Gwavava O (2009) Crustal structure of the Zimbabwe craton and the Limpopo belt of Southern Africa: new constraints from seismic data and implications for its evolution. S Afr J Geol 112:213–228

    Article  Google Scholar 

  • Gwavava O, Ranganai RT (2009) The geology and structure of the Masvingo greenstone belt and adjacent granite plutons from geophysical data, Zimbabwe craton. S Afr J Geol 112:119–132

    Article  Google Scholar 

  • Gwavava O, Swain CJ, Podmore F, Fairhead DJ (1992) Evidence of crustal thinning beneath the Limpopo Belt and Lebombo monocline of southern Africa based upon regional gravity studies and implications for the reconstruction of Gondwana. Tectonophysics 212:1–20

    Article  Google Scholar 

  • Halls HC, Fahrig FW (eds) (1987) Mafic Dyke Swarms. Geological Association of Canada Special Paper 34. Toronto, Ontario, p 503

    Google Scholar 

  • Hansen R, deRidder E (2006) Linear feature analysis for aeromagnetic data. Geophysics 71:L61–L67

    Article  Google Scholar 

  • Hanson RE, Martin MW, Bowring SA, Munyanyiwa H (1998) U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa–east Antarctica and possible Rodinia correlations. Geology 12:1143–1146

    Article  Google Scholar 

  • Hanson RE, Harmer RE, Blenkinsop TG, Bullen DS, Dalziel IWD, Gose WA, Hall RP, Kampunzu AB, Key RM, Mukwakwami J, Munyanyiwa H, Pancake JA, Seidel EK, Ward SE (2006) Mesoproterozoic intraplate magmatism in the Kalahari Craton: a review. J Afr Earth Sc 26:141–167

    Article  Google Scholar 

  • Hofmann A, Kusky T (2004) The Belingwe Greenstone Belt: ensialic or Oceanic? Dev Precambrian Geol 13:487–538

    Article  Google Scholar 

  • Hofmann A, Dirks PHGM, Jelsma HA, Matura N (2003) A tectonic origin for ironstone horizons in the Zimbabwe craton and their significance for greenstone belt geology. J Geol Soc Lon 160:83–97

    Article  Google Scholar 

  • Holzer L, Barton JM, Paya BK, Kramers JD (1999) Tectonothermal history of the western part of the Limpopo belt: tectonic models and new perspectives. J Afr Earth Sc 28:383–402

    Article  Google Scholar 

  • Horstwood MSA, Nesbitt RW, Noble SR, Wilson JF (1999) U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: a reassessment of the timing of craton formation, stabilization and growth. Geology 27:707–710

    Article  Google Scholar 

  • Hunter MA, Bickle MJ, Nisbet EG, Martin A, Chapman HJ (1998) Continental extensional setting for the Archean Belingwe greenstone belt, Zimbabwe. Geology 26:883–886

    Article  Google Scholar 

  • Jaques AL, Wellman P, Whitaker A, Wyborn D (1997) High-resolution geophysics in modern geological mapping. J Aust Geol Geophys 17(2):159–173

    Google Scholar 

  • Jelsma HA, Dirks PHGM (2000) Tectonic evolution of a greenstone sequence in northern Zimbabwe: sequential early stacking and pluton diapirism. Tectonics 19:135–152

    Article  Google Scholar 

  • Jelsma HA, Dirks PHGM (2002) Neoarchaean tectonic evolution of the Zimbabwe Craton. In: Fowler CMR, Ebinger C, Hawkesworth CJ (eds) The Early Earth: Physical, Chemical and Biological Development. Geological Society of London, Special Publications 199, pp 183–211

  • Jelsma HA, van der Beek PA, Vinyu ML (1993) Tectonic evolution of the Bindura-Shamva greenstone belt (northern Zimbabwe): progressive deformation around diapiric batholiths. J Struct Geol 15:163–176

    Article  Google Scholar 

  • Jelsma HA, Vinyu ML, Valbracht PJ, Davies GR, Wijbrans JR, Verdurmen EAT (1996) Constraints on Archaean crustal evolution of the Zimbabwe craton: U-Pb zircon, Sm-Nd and Pb-Pb whole-rock isotope study. Contrib Mineral Petrol 124:55–70

    Article  Google Scholar 

  • Jelsma HA, Kröner A, Bozhko N, Stowe C (2004) Single zircon ages for two Archean banded migmatitic gneisses from central Zimbabwe. S Afr J Geol 107:577–586

    Article  Google Scholar 

  • Jones DL, Robertson IDM, McFadden PL (1975) A palaeomagnetic study of Precambrian dyke swarms associated with the Great Dyke of Rhodesia. Trans Geol Soc S Afr 77:339–413

    Google Scholar 

  • Jones DL, Bates MP, Podmore F, Mushayandebvu MF (1995) The Great Dyke of Zimbabwe and its satellites: recent geophysical results and their implications. In: Srivastava RK, Chandra R (eds) Magmatism in Relation to Diverse Tectonic Settings. Oxford and IBH Publishing Co Pvt Ltd, Oxford, pp 209–222

    Google Scholar 

  • Jones DL, Duncan RA, Briden JC, Randall DE, Mac-Niocaill C (2001) Age of the Batoka basalts, northern Zimbabwe, and the duration of Karoo large igneous province magmatism. Geochem Geophys Geosyst 2:1–15

    Article  Google Scholar 

  • Jourdan F, Feraud G, Bertrand H, Kampunzu AB, Tshoso G, Le Gall B, Tiercelin JJ, Capiez P (2004) The Karoo triple junction questioned: evidence from Jurassic and Proterozoic 40Ar/39Ar ages and geochemistry of the giant Okavango dyke swarm (Botswana). Earth Planet Sci Lett 222:989–1006

    Article  Google Scholar 

  • Jourdan F, Feraud G, Bertrand H, Watkeys MK, Kampunzu AB, Le Gall B (2006) Basement control on dyke distribution in Large Igneous Provinces: case study of the Karoo triple junction. Earth Planet Sci Lett 241:307–322

    Article  Google Scholar 

  • Kamber BS, Kramers JD, Napier R, Cliff RA, Rollinson HR (1995) The Triangle Shear zone, Zimbabwe, revisited: new data document an important event at 2.0 Ga. in the Limpopo Belt. Precambr Res 70:191–213

    Article  Google Scholar 

  • Kamber BS, Biino GG, Wijbrans JR, Davies GR, Villa IM (1996) Archaean granulites of the Limpopo belt, Zimbabwe: one slow exhumation or two rapid events? Tectonics 15(6):1414–1430

    Article  Google Scholar 

  • Kamber BS, Bolhar R, Webb GE (2004) Geochemistry of late Archaean stromatolites from Zimbabwe: evidence of microbial life in restricted epicontinental seas. Precambr Res 132:379–399

    Article  Google Scholar 

  • Kampunzu AB, Tombale AR, Zhai M, Bagai Z, Majaule T, Modisi MP (2003) Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos 71:431–460

    Article  Google Scholar 

  • Khoza D, Jones AG, Muller MR, Evans RL, Webb SJ, Miensopust M, The SAMTEX Team (2013) Tectonic model of the Limpopo Belt: constraints from magnetotelluric data. Precambr Res 226:143–156

    Article  Google Scholar 

  • Kreissig K, Holzer L, Frei R, Villa IM, Kramers JD, Kröner A, Smit CA, van Reenen DD (2001) Geochronology of the Hout River shear zone and the metamorphism in the Southern marginal zone of the Limpopo Belt, Southern Africa. Precambr Res 109:145–173

    Article  Google Scholar 

  • Kusky TM (1998) Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology 26:163–166

    Article  Google Scholar 

  • Le Gall B, Tshoso G, Dyment J, Kampunzu AB, Jourdan F, Fe´raud G, Bertrand H, Aubourg C, Ve´tel W (2005) The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province. J Struct Geol 27:2234–2255

    Article  Google Scholar 

  • Lee MK, Pharaoh TC, Soper NJ (1990) Structural trends in central Britain from images of gravity and aeromagnetic fields. J Geol Soc Lon 147:241–258

    Article  Google Scholar 

  • Marsh JS (2002) Discussion on ‘The geophysical mapping of Mesozoic dyke swarms in southern Africa and their origin in the disruption of Gondwana’. J Afr Earth Sc 35:525–527

    Article  Google Scholar 

  • Martin A (1978) The geology of the Belingwe-Shabani schist belt. Rhod Geol Surv Bull 83:220

    Google Scholar 

  • McDonald AJW, Fletcher CJN, Carruthers RM, Wilson D, Evans RB (1992) Interpretation of the regional gravity and magnetic surveys of Wales, using shaded relief and Euler deconvolution techniques. Geol Mag 129:523–531

    Article  Google Scholar 

  • Mekonnen TK (2004) Interpretation & Geodatabase of dykes using aeromagnetic data of Zimbabwe and Mozambique. MSc Thesis, ITC, Enschede, Netherlands. p 72

  • Mkweli S, Dirks PHGM (1997) What happens at the margin of the Zimbabwe Craton and the Limpopo belt?. Geological Society of Zimbabwe, Abstract Volume, Intraplate Magmatism and Tectonics of southern Africa p 35

    Google Scholar 

  • Mkweli S, Kamber B, Berger M (1995) Westward continuation of the craton-Limpopo Belt tectonic break in Zimbabwe and new age constraints on the timing of the thrusting. J Geol Soc Lon 152:77–83

    Article  Google Scholar 

  • Moody JB (1976) Serpentinisation: a review. Lithos 9:125–138

    Article  Google Scholar 

  • Mukasa SB, Wilson AH, Carlson RW (1998) A multielement geochronologic study of the Great Dyke, Zimbabwe: significance of the robust and reset ages. Earth Planet Sci Lett 164(1/2):353–369

    Article  Google Scholar 

  • Mushayandebvu MF (1995) Magnetic modelling of the Umvimeela and East dykes: evidence for regional tilting of the Zimbabwe craton adjacent to the Limpopo Belt. J Appl Sci South Afr 1:47–58

    Google Scholar 

  • Mushayandebvu MF, Jones DL, Briden JC (1994) A palaeomagnetic study of the Umvimeela Dyke, Zimbabwe: evidence for a Mesoproterozoic overprint. Precambr Res 69:269–280

    Article  Google Scholar 

  • Mushayandebvu MF, Jones DL, Briden JC (1995) Palaeomagnetic and geochronological results from Proterozoic mafic intrusions in southern Zimbabwe. In: Baer G, Heimann A (eds) Physics and Chemistry of Dykes. A.A. Balkema, Rotterdam, pp 293–303

    Google Scholar 

  • Nabighian MN, Grauch VJ, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME (2005) The historical development of the magnetic method in exploration. Geophysics 70:33–61

    Article  Google Scholar 

  • Nguuri TK, Gore J, James DE, Wright C, Zengeni TG, Gwavava O, Webb SJ, Snoke JA (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophys Res Lett 28:2501–2504

    Article  Google Scholar 

  • Oberthür T, Davis DW, Blenkinsop TG, Höhndorf A (2002) Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics of the Great Dyke, Zimbabwe: constraints on late Archean events in the Zimbabwe Craton and Limpopo Belt. Precambr Res 113:293–305

    Article  Google Scholar 

  • Parker AJ, Rickwood PC, Tucker DH (eds) (1990) Mafic Dykes and emplacement mechanisms. Proceedings of 2nd international dyke conference, Adelaide, Australia. A.A. Balkema, Rotterdam, pp 641

  • Percival JA, West GF (1994) The Kapuskasing uplift: a geological and geophysical synthesis. Can J Earth Sci 31:1256–1286

    Article  Google Scholar 

  • Pilkington M, Keating P (2004) Contact mapping from gridded magnetic data—a comparison of techniques. Explor Geophys 35:306–311

    Article  Google Scholar 

  • Prendergast MD (2004) The Bulawayan Supergroup: a late Archaean passive margin-related large igneous province in the Zimbabwe craton. J Geol Soc 161(3):431–445

    Article  Google Scholar 

  • Prendergast MD, Wingate MTD (2007) Zircon geochronology and partial structural re-interpretation of the late Archaean Mashaba Igneous Complex, south-central Zimbabwe. S Afr J Geol 110(4):585–596

    Article  Google Scholar 

  • Ranganai RT (1995) Geophysical Investigations of the Granite-Greenstone Terrain in the South-Central Zimbabwe Archaean Craton. PhD Thesis, University of Leeds, Leeds, pp 288

  • Ranganai RT (2012) Euler deconvolution and spectral analysis of regional aeromagnetic data from the south-central Zimbabwe Craton: tectonic implications. Afr J Sci Technol (AJST) Science and Engineering Series 12(1):34–50

  • Ranganai RT (2013) Structural and subsurface relationships between the Fort Rixon-Shangani Greenstone Belt and the Nalatale Pluton, Zimbabwe, as derived from gravity and aeromagnetic data. S Afr J Geol 116(2):273–296

    Article  Google Scholar 

  • Ranganai RT, Ebinger CJ (2008) Aeromagnetic and LANDSAT TM structural interpretation for identifying regional groundwater exploration targets, south-central Zimbabwe Craton. J Appl Geophys 65:73–83

    Article  Google Scholar 

  • Ranganai RT, Mhindu C (2003) Aeromagnetic and landsat TM structural interpretation and GIS-based definition of mineral exploration targets, South-Central Zimbabwe Craton. 8th SAGA biennial technical meeting and exhibition, 7-10 October 2003, Pilanesberg, RSA, Extended Abstracts CD-Rom, pp 4

  • Ranganai RT, Kampunzu AB, Atekwana EA, Paya BK, King JG, Koosimile DI, Stettler EH (2002) Gravity Evidence for a larger Limpopo Belt in Southern Africa and geodynamic implications. Geophys J Int 149:9–14

    Article  Google Scholar 

  • Ranganai RT, Whaler KA, Ebinger CJ (2008) Gravity anomaly patterns in the south-central Zimbabwe (Archaean) craton and their geological interpretation. J Afr Earth Sc 51(5):257–276

    Article  Google Scholar 

  • Reeves CV (1989) Aeromagnetic interpretation and rock magnetism. First Break 7:275–286

    Article  Google Scholar 

  • Reeves CV (2000) The geophysical mapping of Mesozoic dyke swarms in southern Africa and their origin in the disruption of Gondwana. J Afr Earth Sc 30:499–513

    Article  Google Scholar 

  • Reeves CV, Reford SW, Milligan PR (1997) Airborne geophysics- old methods, new images. In: Gubbins AG (ed) Proceedings of Exploration’97: Fourth Decennial International Conference on Mineral Exploration, pp 13–30

  • Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Robertson IDM (1973) Potash granites of the southern edge of the Rhodesian craton and the northern granulite zone of the Limpopo belt. Geol Soc S Afr Spec Publ 3:265–276

    Google Scholar 

  • Roering C, van Reenen DD, Smit C, Barton JM Jr, de Beer JH, de Wit MJ, Stettler EH, van Schalkwyk JF, Stevens G, Pretorious S (1992) Tectonic model for the evolution of the Limpopo belt. Precambr Res 55:539–552

    Article  Google Scholar 

  • Rollinson HR (1993) A terrane interpretation of the Archaean Limpopo Belt. Geol Mag 130:755–765

    Article  Google Scholar 

  • Rollinson HR, Blenkinsop TG (1995) The magmatic, metamorphic and tectonic evolution of the Northern Marginal Zone of the Limpopo Belt in Zimbabwe. J Geol Soc London 152:65–75

    Article  Google Scholar 

  • Schaller M, Steiner O, Studer I, Holzer L, Herwegh M, Kramers JD (1999) Exhumation of Limpopo Central Zone granulites and dextral continent-scale transcurrent movement at 2.0 Ga along the Palala Shear Zone, Northern Province South Africa. Precambrian Res 96:263–288

    Article  Google Scholar 

  • Schoenberg R, Nägler TF, Gnos E, Kramers JD, Kamber BS (2003) The source of the Great Dyke, Zimbabwe, and its tectonic significance: evidence from Re-Os isotopes. J Geol 111:565–578

    Article  Google Scholar 

  • Schwarz EJ, Hood PJ, Teskey DJ (1987) Magnetic expressions of Canadian diabase dykes and downward modeling. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms, Geological Association of Canada Special Paper 34:153–162

  • Siegesmund S, Jelsma H, Becker J, Davies G, Layer P, van Dijk E, Kater L, Vinyu M (2002) Constraints on the timing of granite emplacement, deformation and metamorphism in the Shamva area, Zimbabwe. Int J Earth Sci 91:20–34

    Article  Google Scholar 

  • Smirnov AV, Evans DAD, Ernst RE, Söderlund U, Li Z-X (2013) Trading partners: tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambr Res 224:11–22

    Article  Google Scholar 

  • Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305

    Article  Google Scholar 

  • Söderlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson P (2010) Towards a complete magmatic barcode for the Zimbabwe craton: baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Precambr Res 183:388–398

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Stettler EH, de Beer JH, Blom MP (1989) Crustal domains in the northern Kaapvaal craton as defined by magnetic lineaments. Precambr Res 45:263–276

    Article  Google Scholar 

  • Stewart JR, Betts PG, Collins AS, Schaefer BF (2009) Multi-scale analysis of Proterozoic shear zones: an integrated structural and geophysical study. J Struct Geol 31:1238–1254

    Article  Google Scholar 

  • Stowe CW (1980) Wrench tectonics in the Archaean Rhodesian craton. Trans Geol Soc S Afr 83:193–205

    Google Scholar 

  • Stubbs HM (2000) The geochemistry and petrogenesis of the Archaean and Palaeoproterozoic dykes and sills of Zimbabwe. PhD thesis, University of Portsmouth, UK

  • Stubbs HM, Hall PR, Hughes DJ, Nesbitt RW (1999) Evidence for a high Mg andesitic parental magma to the East and West satellite dykes of the Great Dyke, Zimbabwe: comparison with the continental tholeiitic Mashonaland sills. J Afr Earth Sci 28(2):325–336

    Article  Google Scholar 

  • Talwani P, Wildermuth E, Parkinson CD (2003) An impact crater in northeast South Carolina inferred from potential field data. Geophys Res Lett 30(7):1366. doi:10.1029/2003GL017051

    Article  Google Scholar 

  • Taylor PN, Kramers DJ, Moorbath S, Wilson JF, Orpen JL, Martin A (1991) Pb/Pb, Sm-Nd and Rb-Sr geochronology in the Archaean craton of Zimbabwe. Chem Geol (Isotope Geosci) 87:175–196

    Article  Google Scholar 

  • Teskey DJ, Hood PJ (1991) The Canadian aeromagnetic database: evolution and applications to the definition of major crustal boundaries. Tectonophysics 192:41–56

    Article  Google Scholar 

  • Treloar PJ, Blenkinsop TG (1995) Archaean deformation patterns in Zimbabwe: true indicators of Tibetan-style crustal extrusion or not? In: Coward MP, Ries AC (eds) Early Precambrian Processes, Geological Society Special Publication 95: 87–108

  • Treloar PJ, Coward MP, Harris NBW (1992) Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precambr Res 55:571–587

    Article  Google Scholar 

  • Uken R, Watkeys MK (1997) An interpretation of mafic dyke swarms and their relationship with major mafic and magmatic events on the Kaapvaal Craton and Limpopo belt. S Afr J Geol 100(4):341–348

    Google Scholar 

  • Verduzco BJ, Fairhead D, Green CM, MacKenzie C (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23:116–119

    Article  Google Scholar 

  • Wilson JF (1990) A craton and its cracks: some of the behaviour of the Zimbabwe block from the Late Archaean to the Mesozoic in response to horizontal movements, and the significance of some of its mafic dyke fracture patterns. J Afr Earth Sc 10:483–501

    Article  Google Scholar 

  • Wilson AH, Prendergast DM (1988) The Great Dyke of Zimbabwe-I: tectonic setting, stratigraphy, petrology, structure, emplacement and crystallization. In: Prendergast MD, Jones MJ (eds) Magmatic Sulphides- the Zimbabwe Volume. IMM, London, pp 1–20

    Google Scholar 

  • Wilson JF, Jones DL, Kramers JD (1987) Mafic dyke swarms in Zimbabwe. In: Halls HC, Fahrig WF (eds) Mafic Dyke Swarms, Geological Association of Canada Special Paper 34: 433–444

  • Wilson JF, Nesbitt RW, Fanning CM (1995) Zircon geochronology of Archaean felsic sequences in the Zimbabwe Craton: a revision of greenstone stratigraphy and a model for crustal growth. In: Coward MP, Ries AC (eds) Early precambrian processes, Geological Society Special Publication 95:109–126

  • Wolfenden E, Ebinger C, Yirgu G, Deino A, Ayalew D (2004) Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sci Lett 224:213–228

    Article  Google Scholar 

Download references

Acknowledgments

The Zimbabwe Geological Survey provided the aeromagnetic data used in this study and gave permission for the data to be published. This work represents part of postgraduate studies by RTR at the University of Leeds, funded by the Association of Commonwealth Universities, Commonwealth Scholarship Commission. RTR and KAW benefited from the British Council Link scheme between the Departments of Earth Sciences (University of Leeds) and Physics (University of Zimbabwe). RTR acknowledges initial contributions on this work from Dai Jones and Branko Corner, and thanks Alan Reid for advice and encouragement at various stages of the study. An extensive critical review by H Jelsma on the initial manuscript as well as comments by B Drenth and P Johnson on subsequent versions is greatly appreciated as they improved the paper. Constructive comments by the reviewers, especially Henry V Lyatsky, are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubeni T. Ranganai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganai, R.T., Whaler, K.A. & Ebinger, C.J. Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications. Int J Earth Sci (Geol Rundsch) 105, 2175–2201 (2016). https://doi.org/10.1007/s00531-015-1279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1279-7

Keywords

Navigation