Skip to main content

Advertisement

Log in

Hydrocarbon prospectivity in the Hellenic trench system: organic geochemistry and source rock potential of upper Miocene–lower Pliocene successions in the eastern Crete Island, Greece

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Results of the current and already published studies suggest that the Tortonian in age deposits could serve a major source rocks (for both oil and gas) beneath the Messinian evaporites in the Hellenic trench system. Additionally, the strong terrestrial input in Pliocene deposits could lead to the production of biogenic gas, similar to the Po basin in Adriatic Sea (Italy). In the current study, fourteen samples from late Miocene Faneromeni section and twelve samples from the early Pliocene Makrilia section in eastern Crete were collected in order to evaluate their hydrocarbon generation potential. For this purpose, Rock-Eval analysis and characterization of the organic matter were performed. The results document a clear distinction between the two sections. Faneromeni section contains organic matter of kerogen type III, whereas the Makrilia section contains organic matter of kerogen type IV. The HI/TOC plot diagram, in both sections, indicates poor oil generating potential, with the exception of several samples showing fair to good gas and oil potential. Although thermal maturities of the samples from the two successions are similar, according to the T max values, samples from Faneromeni succession exhibit higher hydrogen index values, indicating a better quality of organic matter in terms of hydrocarbon generation. Very low obtained concentrations of bitumen (mg/g of rock), as well as the predominance of NSO compounds, compared to the saturates and aromatics, indicate low maturation level. The n-alkanes profiles exhibit a bimodal distribution, indicating a mixed origin (marine and terrestrial) of the organic matter in both areas. Terrestrial organic matter input is more pronounced in Makrilia section. The analysis of saturated biomarkers indicates that Faneromeni deposits were accumulated under constant organic matter input in an environment influenced by cyclic changes (from marine to lagoon origin and vice versa). Faneromeni section corresponds to a restricted basin during Tortonian, with quick and often sea-level fluctuations just before the Messinian crisis, while Makrilia section represents a very restricted intramontane basin with strong terrestrial influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Angelier J, Lybéris N, Le Pichon X, Barrier E, Huchon P (1982) The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics 86:159–196

    Article  Google Scholar 

  • Bernhard JM, Alve E (1996) Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway); response to anoxia. Mar Micropaleontol 28:5–17

    Article  Google Scholar 

  • Burwood R, De Witte SM, Mycke B, Paulet J (1995) Petroleum geochemical characterization of the lower Congo Coastal Basin Bucomazi formation. In: Katz BJ (ed) Petroleum Source Rocks. Springer-Verlag, Berlin, pp 235–263

    Chapter  Google Scholar 

  • Camerlenghi A, McCoy WF (1990) Physiography and structure of Bacino Bannock (eastern Mediterranean). Geo Mar Lett 10:15–23

    Article  Google Scholar 

  • Caputo R, Catalano S, Monaco C, Romagnoli G, Tortorici G, Tortorici L (2010) Active faulting on the island of Crete (Greece). Geophys J Int 183:111–126

    Article  Google Scholar 

  • Chatzaras V, Xypolias P, Doutsos T (2006) Exhumation of high-pressure rocks under continuous compression: a working hypothesis for the southern Hellenides (central Crete, Greece). Geol Mag 143:859–876

    Article  Google Scholar 

  • Chatzaras V, DörrW Finger F, Xypolias P, Zulauf G (2013) U–Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evia Island): implications for the Triassic tectonic setting of Greece. Tectonophysics 595(596):125–139

    Article  Google Scholar 

  • Cita MB (1991) Anoxic basins of the eastern Mediterranean: an overview. Paleoceanography 6:133–141

    Article  Google Scholar 

  • Cita MB, Camerlenghi A (1990) The Mediterranean Ridge as an accretionary prism in collisional context. Mem Soc Geol Ital 45:463–480

    Google Scholar 

  • Doutsos T, Koukouvelas IK, Xypolias P (2006) A new orogenic model for the External Hellenides. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern Mediterranean region, vol 260. Geological Society of London, Special Publications, London, pp 507–520

    Google Scholar 

  • Drinia H, Anastasakis G (2012) Benthic foraminifer palaeoecology of the Late Quaternary continental outer shelf of a landlocked marine basin in central Aegean Sea, Greece. Quat Int 261:43–52

    Article  Google Scholar 

  • Dymann TS, Palacos JG, Tysdal RG, Perry WJ, Palwlewicz MJ (1996) Source rock potential of middle cretaceous rocks in southwestern Montana. Am Assoc Pet Geol Bull 80:1177–1184

    Google Scholar 

  • Edelmann-Furstenberg Y, Scherbacher M, Hemleben C, Almogi-Labin A (2001) Deep-sea benthic foraminifera from the central Red Sea. J Foraminifer Res 31:48–59

    Article  Google Scholar 

  • Elia C, Zelilidis A (2013) The tectono-stratigraphic evolution of SE Mediterranean with emphasis on Herodotus basin prospectivity for the development of hydrocarbon fields. Bull Geol Soc Greece v, ΧLIII/

    Google Scholar 

  • Faccenna C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection of the Mediterranean mantle. J Geophys Res 108(B2):2099. doi:10.1029/2001JB001690

    Article  Google Scholar 

  • Fassoulas C (2001) The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion basin, Crete, Greece. J Geodyn 31:49–70

    Article  Google Scholar 

  • Fontanier C, Jorissen FJ, Licari L, Alexandre P, Anschutz P, Carbonel P (2002) Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep Sea Res Part 1 Oceanogr Res Pap 49:751–785

    Article  Google Scholar 

  • Fortuin AR (1977) Stratigraphy and sedimentary history of the Neogene deposits in the Ierapetra region, Eastern Crete. GUA Pap Geol 1(8):164

    Google Scholar 

  • Fortuin AR (1978) Late Cenozoic history of eastern Crete and implications for the geology and geodynamics of the southern Aegean region. Geol Mijnbouw 57:451–464

    Google Scholar 

  • Gardosh M, Druckman Y (2006) Seismic Stratigraphy, Structure and Tectonic Evolution of the Levantine Basin, Offshore Israel. Geol Soc Lond Spec Publ 260:201–227

    Article  Google Scholar 

  • Gradstein FM, Van Gelder A (1971) Prograding clastic fans and transition from fluviatile to a marine environment in Neogene deposits of Eastern Crete. Geol Mijnbouw 50:383–392

    Google Scholar 

  • Heezen BC, Ewing M (1963) The mid oceanic ridge. In: Hill MN (ed) The seas, vol 3. Interscience, New York, pp 388–410

    Google Scholar 

  • Hermelin JOR, Shimmield GB (1990) The importance of the oxygen minimum zone and sediment geochemistry in the distribution of recent benthic foraminifera in the northwest Indian Ocean. Mar Geol 91:1–29

    Article  Google Scholar 

  • Huchon Ph, Lyberis N, Angelier J, Le Pichon X, Renard V (1982) Tectonics of the Hellenic Trench: a synthesis of the Sea-Beam and submersible observations. Tectonophysics 86:69–112

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. WH Freeman and Company, New York

    Google Scholar 

  • Institute for Geology and Subsurface Research (1959a) Geological map of Greece at scale 1:50.000, sheet Ziros

  • Institute for Geology and Subsurface Research (1959b) Geological map of Greece at scale 1:50.000, sheet Ierapetra

  • Jacobshagen V (1986) Geologie von Griechenland. Borntraeger, Berlin

    Google Scholar 

  • Jones RW (1984) Comparison of carbonate and shale source rocks. In: Palacas J (ed) Petroleum geochemistry and source potential of carbonate rocks. American Association of Petroleum Geologists, AAPG Studies in Geology, Tulsa, pp 163–180

    Google Scholar 

  • Jorissen FJ (1987) The distribution of benthic foraminifera in the Adriatic Sea. Mar Micropaleontol 12:21–48

    Article  Google Scholar 

  • Jorissen FJ (1999) Benthic foraminiferal microhabitats. In: Gupta BKS (ed) Modern foraminifera. Kluwer Academic Publishers, Berlin, pp 161–179

    Chapter  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22:719–722

    Article  Google Scholar 

  • Kaiho K (1999) Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Mar Micropalaeontol 37:67–76

    Article  Google Scholar 

  • Kokkalas S, Doutsos T (2004) Kinematics and strain partitioning in the southeast Hellenides (Greece). Geol J 39:121–140

    Article  Google Scholar 

  • Kokkalas S, Xypolias P, Koukouvelas I, Doutsos T (2006) Post collisional contractional and extensional deformation in the Aegean region. In: Dilek Y, Pavlides S (eds) Post collisional tectonics and magmatism in the Mediterranean region and Asia. Geol Soc Lond Spec Publ 409:97–123

  • Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys J Int 157:1377–1392

    Article  Google Scholar 

  • Krijgsman W, Hilgen FJ, Langereis CG, Zachariasse WJ (1994) The age of the Tortonian/Messinian boundary. Earth Planet Sci Lett 121:533–547

    Article  Google Scholar 

  • Kuhnt T, Schmiedl G, Ehrmann W, Hamann Y, Hemleben C (2007) Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by benthic foraminifera. Mar Micropaleontol 64:141–162

    Article  Google Scholar 

  • Lutze GF, Coulbourn WT (1984) Recent benthic foraminifera from the continental margin of northwest Africa: community structure and distribution. Mar Micropaleontol 8:361–401

    Article  Google Scholar 

  • Maravelis A, Makrodimitras G, Zelilidis A (2012) Hydrocarbon prospectivity in western Greece. Gas Eur Mag 38:64–89

    Google Scholar 

  • Maravelis A, Panagopoulos G, Piliotis I, Pasadakis N, Manutsogu E, Zelilidis A (2013) Pre-Messinian (sub-Salt) source-rock potential on back-stop basins of the Hellenic Trench system (Messara Basin, Central Crete, Greece). Oil Gas Sci Technol Fr. doi:10.2516/ogst/2013130

    Google Scholar 

  • Maravelis A, Koukounya A, Tserolas P, Pasadakis N, Zelilidis A (2014) Messinian drawdown, evaporites and petroleum exploration on the Hellenic Fold and Thrust Belt, Zakynthos Island, Ionian Sea, western Greece. Mar Pet Geol. doi:10.1016/j.marpetgeo.2014.09.014

    Google Scholar 

  • Maravelis A, Manutsoglou E, Konstantopoulos P, Pantopoulos G, Makrodimitras G, Zoumpoulis E, Zelilidis A (2015) Hydrocarbon plays and prospectivity of the Mediterranean ridge. Energy Sour Part A Recovery Util Environ Eff 37:347–355

    Article  Google Scholar 

  • Meulenkamp JE (1979) Field guide to the Neogene of Crete. Dep Geol Pal Univ Athens Ser A32:1–31

    Google Scholar 

  • Meulenkamp JE, Sissingh W (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol 196:209–228

    Article  Google Scholar 

  • Meulenkamp JE, Wortel MJR, Van Wamel WA, Spakman W, Hoogerduyn Strating E (1988) On the Hellenic subduction zone and the geodynamical evolution of Crete since the late middle Miocene. Tectonophys 146:203–215

    Article  Google Scholar 

  • Moforis L, Kostopoulou S, Panagopoulos G, Pyliotis J, Triantaphyllou M, Manoutsoglou E, Zelilidis A (2013) Sedimentation processes and palaeogeographic evolution of Makrilia Pliocene deposits. SE Crete, Bull Geol Soc Greece ΧLIII/

    Google Scholar 

  • Morley CK, King R, Hillis R, Tingay M, Backe G (2011) Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review. Earth Sci Rev 104:41–91

    Article  Google Scholar 

  • Olivet JL, Bonnin J, Beuzart P, Auzende JM (1982) Cinematique des plaques etpaleogeographie: une revue. Bull de la Societe Geologique de France XXIV:875–892

    Article  Google Scholar 

  • Pasadakis N, Dagounaki V, Chamilaki E, Vafidis A, Zelilidis A, Piliotis I, Panagopoluos G, Manoutsoglou E (2012) Organic geochemical evaluation of Neogene formations in Messara (Heraklion, Crete) basin as source rocks of biogenetic methane. Miner Wealth 166:8–26

    Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rocks using programmed pyrolysis. Am Assoc Pet Geol Bull 70:319–329

    Google Scholar 

  • Peters KE, Cassa MR (1994) Applied source rock geochemistry. In: Magoon LB, Dow WG (eds) The petroleum system-from source to trap. American Association of Petroleum Geologists Memoir, Tulsa, pp 93–120

    Google Scholar 

  • Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide In: Biomarkers and isotopes in petroleum exploration and earth history, 2nd edn., vol 2. Cambridge University Press, Cambridge

  • Pyliotis I, Zelilidis A, Pasadakis N, Panagopoulos G, Manoutsoglou E (2013) Source rock potential of the late Miocene Metochia formation of Gavdos island, Greece. Bull Geol Soc Greece v:ΧLIII

    Google Scholar 

  • Rathbourn AE, Corliss BH (1994) The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea. Paleoceanography 9:87–150

    Article  Google Scholar 

  • Reillinger RE, McClusty SC, Oral MB, King RW, Toksoz MN (1997) Global positioning system measurements of present-day crustal movements in the Arabia–Africa–Eurasia plate collision zone. J Geophys Res 102:9983–9999

    Article  Google Scholar 

  • Ring U, Layer PW, Reischmann T (2001) Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: evidence for large-magnitude displacement on the Cretan detachment. Geology 29:395–398

    Article  Google Scholar 

  • Rio D, Raffi I, Villa G (1990) Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. In: Kastens KA, Mascle J et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results 107:513–531

  • Roberts G, Peace D (2007) Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. Geo Arab 12(3):99–124

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan P, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:289–344

    Article  Google Scholar 

  • Russo B, Curcio E, Iaccarino S (2007) Paleoecology and paleoceanography of a Langhian succession (Tremiti Islands, southern Adriatic Sea, Italy) based on benthic foraminifera. Boll Soc Paleontol Ital 46:107–124

    Google Scholar 

  • Ryan WBF (1973) Geodynamic implications of the Messinian crisis of salinity. In: Drooger CW (ed) Messinian events in the Mediterranean. North-Holland Publishing Co., Amsterdam, pp 26–38

    Google Scholar 

  • Semb HP (2009) Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon. Geo Arab 14:49–66

    Google Scholar 

  • Skourlis K, Doutsos T (2003) The Pindos fold and thrust belt (Greece): inversion kinematics of a passive continental margin. Int J Earth Sci 92:891–903

    Article  Google Scholar 

  • Ten Veen JH, Kleinspehn KL (2003) Incipient continental collision and plate-boundary curvature: late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece. J Geol Soc 160:161–181

    Article  Google Scholar 

  • Ten Veen JH, Postma G (1999) Neogene tectonics and basin fill patterns in the Hellenic outer-arc (Crete, Greece). Basin Res 11:243–266

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Tortorici L, Caputo R, Monaco C (2010) Late Neogene to quaternary contractional structures in Crete (Greece). Tectonophysics 483:203–213

    Article  Google Scholar 

  • Vafidis A, Andronikidis N, Economou N, Panagopoulos G, Zelilidis A, Manoutsoglou E (2012) Reprocessing and interpretation of seismic reflection data at Messara Basin, Crete, Greece. J Balkan Geophys Soc 15:31–40

    Google Scholar 

  • Van der Zwaan GJ (1983) Quantitative analysis and the reconstruction of benthic foraminiferal communities. In Meulenkamp JE (ed) Reconstruction of marine paleoenvironments. Utrecht Micropaleontol Bull 30:49–69

  • Van Hinsbergen DJJ, Meulenkamp JE (2006) Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Res 18:103–124

    Article  Google Scholar 

  • Van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel MJR (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33:325–328

    Article  Google Scholar 

  • Verhallen PJJM (1987) Early development of Bulimina marginata in relation to paleoenvironmental changes in the Mediterranean. Proc K Ned Akad Wet Ser B 90:161–180

    Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  • Winkler S, Haakensen N, Nesje A, Rye N (1997) Glaziale Dynamik in Westnorwegen – Ablauf und Ursachen des aktuellenGletschervorstoßes am Jostedalsbreen. Petermanns Geogr Mitt 141:43–63

    Google Scholar 

  • Xypolias P, Dörr W, Zulauf G (2006) Late Carboniferous plutonism within the pre-Alpine basement of the External Hellenides (Kithira, Greece): evidence from U-Pb zircon dating. J Geol Soc Lond 163:539–547

    Article  Google Scholar 

  • Zelilidis A, Maravelis AG (2015) Introduction to the thematic issue: Adriatic and Ionian Seas: proven petroleum systems and future prospects. J Pet Geol 38:247–254

    Article  Google Scholar 

  • Zelilidis A, Piper DJW, Vakalas J, Avramidis P, Getsos K (2003) Oil and gas plays in Albania: do equivalent plays exist in Greece? J Pet Geol 26:29–48

    Article  Google Scholar 

  • Zelilidis A, Maravelis AG, Tserolas P, Konstantopoulos PA (2015) An overview of the petroleum systems in the Ionian zone, onshore NW Greece and Albania. J Pet Geol 38:331–348

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2015) Closure of the Paleotethys in the External Hellenides: constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res 28:642–667

    Article  Google Scholar 

Download references

Acknowledgments

This paper reflects the research conducted by the: (1) Hydrocarbons Chemistry and Technology Research Unit, Technical University of Crete, Chania, Greece, (2) Laboratory of Sedimentology, Department of Geology, University of Patras, Greece, (3) School of Environmental and Life Sciences, University of Newcastle, NSW, Australia, and (4) Faculty of Geology and Geoenvironment, University of Athens, Greece. We would like to thank Editor Prof. Xypolias and the two reviewers’ Prof. Stojanović and Prof. Foscolos for their constructive comments which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zelilidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelilidis, A., Tserolas, P., Chamilaki, E. et al. Hydrocarbon prospectivity in the Hellenic trench system: organic geochemistry and source rock potential of upper Miocene–lower Pliocene successions in the eastern Crete Island, Greece. Int J Earth Sci (Geol Rundsch) 105, 1859–1878 (2016). https://doi.org/10.1007/s00531-015-1278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1278-8

Keywords

Navigation