International Journal of Earth Sciences

, Volume 105, Issue 5, pp 1353–1370 | Cite as

Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model

  • B. Oliva-Urcia
  • I. Gil-Peña
  • A. Maestro
  • J. López-Martínez
  • J. Galindo-Zaldívar
  • R. Soto
  • A. Gil-Imaz
  • J. Rey
  • O. Pueyo
Original Paper


Deception Island shows the most recent exposed active volcanism in the northern boundary of the Bransfield Trough. The succession of the volcanic sequence in the island is broadly divided into pre- and post-caldera collapse units although a well-constrained chronological identification of the well-defined successive volcanic episodes is still needed. A new paleomagnetic investigation was carried out on 157 samples grouped in 20 sites from the volcanic deposits of Deception Island (South Shetlands archipelago, Antarctic Peninsula region) distributed in: (1) volcanic breccia (3 sites) and lavas (2 sites) prior to the caldera collapse; (2) lavas emplaced after the caldera collapse (10 sites); and (3) dikes cutting pre- and the lowermost post-caldera collapse units (5 sites). The information revealed by paleomagnetism provides new data about the evolution of the multi-episodic volcanic edifice of this Quaternary volcano, suggesting that the present-day position of the volcanic materials is close to their original emplacement position. The new data have been combined with previous paleomagnetic results in order to tentatively propose an age when comparing the paleomagnetic data with a global geomagnetic model. Despite the uncertainties in the use of averaged paleomagnetic data per volcanic units, the new data in combination with tephra occurrences noted elsewhere in the region suggest that the pre-caldera units (F1 and F2) erupted before 12,000 year BC, the caldera collapse took place at about 8300 year BC, and post-caldera units S1 and S2 are younger than 2000 year BC.


Paleomagnetic dating Volcanism Caldera Quaternary Bransfield Strait Antarctic Peninsula 



The authors express their gratitude to the personnel of the Gabriel de Castilla Antarctic station, for the logistic support. This work was supported by the Projects CTM2011-13902E, CTM2011-26372 and CTM214-57119-R of the Spanish National R&D Plan. The authors are also very grateful to the reviewers J.L. Smellie and S. Moreton for their valuable and constructive comments, which helped to improve substantially the manuscript.


  1. Acosta J, Canals M, Alonso B, ORCA Group (1994) Bathymetry of the Hesperides Deep, Scotia Sea, South Scotia Ridge, Antarctica. Map scale 1:200,000. GRGM (eds), University of Barcelona, BarcelonaGoogle Scholar
  2. Baker PE, McReath I, Harvey MR, Roobol MJ, Davies TG (1975) The geology of the South Shetland Islands: V. The volcanic evolution of deception Island. Br Antarct Surv Sci Reps 78:1–81Google Scholar
  3. Baraldo A, Rinaldi CA (2000) Stratigraphy and structure of Deception Island, South Shetland Island, Antarctica. J S Am Earth Sci 13:785–796CrossRefGoogle Scholar
  4. Baraldo A, Rapalini AE, Böhnel H, Mena M (2003) Paleomagnetic study of Deception Island, South Shetland Islands, Antarctica. Geophys J Int 153:333–343CrossRefGoogle Scholar
  5. Barker DHN, Austin JA (1994) Crustal diapirism in Bransfield Strait, West Antarctica: evidence for distributed extension in marginal-basin formation. Geology 22:657–660CrossRefGoogle Scholar
  6. Barker PF, Dalziel IWD, Storey BC (1991) Tectonic development of the Scotia Arc Region. In: Tingey RJ (ed) Antarctic geology. Oxford University Press, Oxford, pp 215–248Google Scholar
  7. Birkenmajer K (1992) Volcanic succession at Deception Island, West Antarctica: a revised lithostratigraphic standard. Stud Geol Pol 101:27–82Google Scholar
  8. Björck S, Hákansson H, Zale R, Karlén W, Liedberg-Jönsson B (1991a) A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic implications. Ant Sci 3:61–72CrossRefGoogle Scholar
  9. Björck S, Sandgren P, Zale R (1991b) Late Holocene tephrochronology of the northern Antarctic Peninsula. Quat Res 36:322–328CrossRefGoogle Scholar
  10. Butler RF (1992) Paleomagnetism. Magnetic domains to geologic terranes. Blackwell Sc Pub, 319 ppGoogle Scholar
  11. Canals M, Acosta J, Gràcia E, Escartín J, Grupo ORCA (1992) Caracterización geológica de la región de enlace entre la Cuenca de Bransfield y la Dorsal Sur de Scotia (Antártida). Acta Geol Hisp 27:89–110Google Scholar
  12. Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet. Comput Geosci 51:193–205. doi: 10.1016/j.cageo.2012.07.021 CrossRefGoogle Scholar
  13. Carlut J, Quidelleur X, Courtillot V, Boudon G (2000) Paleomagnetic directions and K/Ar dating of 0 to 1 Ma lava flows from La Guadeloupe Island (French West Indies): implications for time-averaged field models. J Geophys Res 105(B1):835–849. doi: 10.1029/1999JB900238 CrossRefGoogle Scholar
  14. Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques XXVII: 20–21Google Scholar
  15. Dalziel IWD (1984) Tectonic evolution of a fore-arc terrane, southern Scotia Ridge, Antarctica. Geol Soc of America Sp Paper 200, 32 pGoogle Scholar
  16. Doell RR, Cox A (1963) The accuracy of the paleomagnetic method as evaluated from historic Hawaiian lave flows. Geophys Res Lett 68:1997–2009. doi: 10.1029/JZ068i007p01997 CrossRefGoogle Scholar
  17. Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambrige, 572 pCrossRefGoogle Scholar
  18. Fisk MR (1990) Volcanism in the Bransfield Strait, Antarctica. J S Am Earth Sci 3:91–101CrossRefGoogle Scholar
  19. Flynn LP, Mouginois-Mark PJ (1992) Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophys Res Lett 17:1783–1786CrossRefGoogle Scholar
  20. Fretzdorff S, Worthington TJ, Haase KM, Hékinian R, Franz L, Keller RA, Stoffers P (2004) Magmatism in the Bransfield Basin: rifting of the South Shetland Arc? J Geophys Res 109:B12208. doi: 10.1029/2004JB003046 CrossRefGoogle Scholar
  21. Funaki M, Sakanaka S, Higashimno S-I (2012) The first successful aeromagnetic survey by an autonomous unmanned aerial vehicle, AntPlane 6-3, in Antarctica. 13th Castle Meeting, Zvolen Slovakia. AbstractsGoogle Scholar
  22. Galé C, Ubide T, Lago M, Gil-Imaz A, Gil-Peña I, Galindo-Zaldívar J, Rey J, Maestro A, López-Martínez J (2014) Vulcanismo cuaternario de la Isla Decepción (Antártida): una signatura relacionada con la subducción de la Fosa de las Shetland del Sur en el dominio de tras-arco de la Cuenca de Bransfield. Bol Geol y Min 125(1):31–52Google Scholar
  23. Galindo-Zaldívar J, Jabaloy A, Maldonado A, De Galdeano CS (1996) Continentalfragmentation along the South Scotia Ridge transcurrent plate boundary (NE Antarctic Peninsula). Tectonophysics 258(1):275–301CrossRefGoogle Scholar
  24. Galindo-Zaldívar J, Gamboa L, Maldonado A, Nakao S, Bochu Y (2004) Tectonic development of the Bransfield Basin and its prolongation to the South Scotia Ridge, northern Antarctic Peninsula. Mar Geol 206(1):267–282CrossRefGoogle Scholar
  25. Gil-Imaz A, Gil-Peña I, Galindo-Zaldívar J, Rey-Salgado J, Maestro-González A, Pueyo-Anchuela Ó, Soto-Marín R, Oliva-Urcia B, López-Martínez J (2010) Magnetic fabric significance of quaternary volcanic rocks of Deception Island (South Shetland Islands, Antarctica). Geogaceta 49:103–106Google Scholar
  26. Gómez-Paccard M, Beamud E (2008) Recent achievements in archaeomagnetic dating in the Iberian Peninsula: application to four Spanish structures. J Archaeol Sci 35:1389–1398. doi: 10.1016/j.jas.2007.10.005 CrossRefGoogle Scholar
  27. Gómez-Paccard M, Catanzariti G, Ruiz-Martínez VC, McIntosh G, Núñez JI, Osete ML, Chauvin A, Lanos PH, Tarling DH, Bernal-Cassola D, Thiriot J, Archaeological Working Group (2006) A catalogue of Spanish archaeomagnetic data. Geophys J Int 166:1135–1143CrossRefGoogle Scholar
  28. González-Casado JM, López-Martínez J, Durán JJ (1999) Active tectonics and morphostructure at the northern margin of the central Bransfield Basin, Hurd Peninsula, Livingston Island (South Shetland Islands). Ant Sc 11:323–331Google Scholar
  29. González-Casado JM, Giner J, López-Martínez J (2000) Bransfield Basin, Antarctic Peninsula: not a normal backarc basin. Geology 28(11):1043–1046CrossRefGoogle Scholar
  30. González-Ferrán O (1985) Volcanic and tectonic evolution of the northern Antarctica Peninsula—Late Cenozoic to Recent. Tectonophysics 114:389–409CrossRefGoogle Scholar
  31. Gràcia E, Canals M, Farrán M, Prieto MJ, Sorribas J, GEBRA Team (1996) Morphostructure and evolution of the Central and eastern Bransfield Basins (NW Antarctic Peninsula). Mar Geophys Res 18:429–448CrossRefGoogle Scholar
  32. Grad M, Guterch A, Sroda P (1992) Upper crustal structure of Deception Island Area, Bransfield Strait, West Antarctica. Ant Sci 4:469–476CrossRefGoogle Scholar
  33. Griffiths RW (2000) The dynamics of lava flows. Ann Rev Fluid Mech 32:477–518CrossRefGoogle Scholar
  34. Hall B, Henderson G (2001) Use of uranium–thorium dating to determine past 14C reservoir effects in lakes—examples from Antarctica. Earth Plan Sci Lett 193:565–577CrossRefGoogle Scholar
  35. Hawkes DD (1961) The geology of the South Shetland Islands: II. The geology and petrology of Deception Island. Falkland Islands Dependencies Survey Scientific Reports 27, 43Google Scholar
  36. Hjort C, Ingólfsson Ó, Möller P, Lirio JM (1997) Holocene glacial history and sealevel changes on James Ross Island, Antarctic Peninsula. J Quat Sci 12:259–273CrossRefGoogle Scholar
  37. Hodgson DA, Dyson CL, Jones VJ, Smellie JL (1998) Tephra analysis of sediments from Midge Lake (South Shetland Islands) and Sombre Lake (South Orkney Islands), Antarctica. Ant Sci 10(1):13–20CrossRefGoogle Scholar
  38. Ingólfsson Ó, Hjort C, Björck S, Smith RIL (1992) Late Pleistocene and Holocene glacial history of James Ross Island, Antarctic Peninsula. Boreas 21:209–222CrossRefGoogle Scholar
  39. Keller R, Fisk MR (1992) Quaternary marginal basin volcanism in the Bransfield Strait as a modern analogue of the Southern Chilean Ophiolites. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their modern oceanic analogues. Geol Soc London Spec Publ, vol 60, pp 155–169Google Scholar
  40. Keller RA, Fisk MR, Birkenmajer K (1991) Isotopic and trace element constraints on mixing and melting models of marginal basin volcanism, Bransfield Strait, Antarctica. Earth Plan Sci Lett 111:287–303CrossRefGoogle Scholar
  41. Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys J Int 62:669–718CrossRefGoogle Scholar
  42. Kissel C, Rodríguez-González A, Laj C, Pérez-Torrado F, Carracedo JC, Wandress C, Guillou H (2015) Paleosecular variation of the earth magnetic field at the Canary Islands over the last 15 ka. Earth Plan Lett 412:52–60CrossRefGoogle Scholar
  43. Klepeis KA, Lawver LA (1996) Tectonics of the Antarctic–Scotia plate boundary near Elephant and Clarence Islands, West Antarctica. J Geophys Res 101(B9):20211–20231CrossRefGoogle Scholar
  44. Kraus S, Kurbatov A, Yates M (2013) Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes. Andean Geology 40(1):1–40. doi: 10.5027/andgeoV40n1-a01 CrossRefGoogle Scholar
  45. Lawver LA, Keller RA, Fisk MR, Strelin J (1995) Bransfield Strait, Antarctic Peninsula active extension behind a dead arc. In: Taylor B (ed) Backarc Basins: tectonics and magmatism. Plenum Pub Corp, New York, pp 315–342CrossRefGoogle Scholar
  46. Lawver LA, Sloan BJ, Barker DHN, Ghidella M, Von Herzen RP, Keller RA, Klinkhammer GP, Chin CS (1996) Distributed, active extension in Bransfield Basin, Antarctic Peninsula: evidence from multibeam bathymetry. GSA Today 6:1–6Google Scholar
  47. Lee YI, Li HS, Yoon HI, Tatur A (2007) Characteristics of tephra in Holocene lake sediments on King George Island, West Antarctica: implications for deglaciation and paleoenvironment. Quat Sci Rev 26:3167–3178CrossRefGoogle Scholar
  48. López-Martínez J, Serrano E, Rey J, Smellie JL (2000) Geomorphological map of Deception Island. BAS GEOMAP Series, Sheet 6-B, 1:25,000. British Antarctic Survey, CambridgeGoogle Scholar
  49. Maestro A, Somoza L, Rey J, Martínez-Frías J, López-Martínez J (2007) Active tectonics, fault pattern and stress field of Deception Island: a response to oblique convergence between the Pacific and Antarctic plates. J S Am Earth Sci 23:256–268CrossRefGoogle Scholar
  50. Maldonado A, Larter RD, Aldaya F (1994) Forearc tectonic evolution of the South Shetland Margin, Antarctic Peninsula. Tectonics 13:1345–1370CrossRefGoogle Scholar
  51. Martí J, Baraldo A (1990) Pre-caldera pyroclastic deposits of Deception Island (South Shetland Islands). Earth Sci Glaciol 2:345–352. doi: 10.1017/S0954102090000475 Google Scholar
  52. Martí J, Geyer A, Aguirre-Díaz G (2013) Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica). Bull Volc 75(6):732CrossRefGoogle Scholar
  53. Matthies D, Mäusbacher R, Storzer D (1990) Deception Island tephra: a stratigraphical marker for limnic and marine sediments in Bransfield Strait area, Antarctica. Zbl Geol Paläont 1:153–165Google Scholar
  54. Moreton SG (1999) Quaternary tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica. PhD Thesis, Cheltenham and Gloucester College of Higher Education, UK, 164 p.
  55. Ortiz R, Vila J, García A (1992) Geophysical features of Deception Island. In: Yoshida Y, Kaminuma K, Shiraishi K (eds) Recent progress in Antarctic Earth Science. Terrapub, Tokyo, pp 443–448Google Scholar
  56. Pallàs R, Smellie JL, Casas JM, Calvet J (2001) Using tephrochronology to date temperate ice: correlation between ice tephras on Livingston Island and eruptive units on Deception Island volcano (South Shetland Islands, Antarctica). Holocene 11(2):149–160CrossRefGoogle Scholar
  57. Paquereau-Lebti P, Fornari M, Roperch P, Thouret JC, Macedo O (2008) Paleomagnetism, magnetic fabric, and 40Ar/39Ar dating of Pliocene and quaternary ignimbrites in the Arequipa area, southern Peru. Bull Volcanol 70:977–997. doi: 10.1007/s00445-007-0181 CrossRefGoogle Scholar
  58. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109CrossRefGoogle Scholar
  59. Poblete F, Arriagada C, Roperch P, Astudillo N, Hervé F, Kraus S, Le Roux JP (2011) Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula. Earth Planet Sci Lett 302:299–313CrossRefGoogle Scholar
  60. Porreca M, Giordano G, Mattei M, Musacchio P (2006) Evidence of two Holocene phreatomagmatic eruptions at Stromboli volcano (Aeolian Islands) from paleomagnetic data. Geophys Res Lett 33:L21316. doi: 10.1029/2006GL027575 CrossRefGoogle Scholar
  61. Pueyo-Anchuela O, Gil-Imaz A, Gil-Peña I, Maestro A, Galindo-Zaldívar J, López-Martínez J, Rey J, Soto R, Oliva-Urcia B (2014) Application of AMS for reconstruction of the geological evolution of recent volcanic systems: case of Deception Island (South Shetland Islands, Antarctica). Tectonophysics 626:69–85. doi: 10.1016/j.tecto.2014.03.032 CrossRefGoogle Scholar
  62. Ramón MJ, Pueyo EL (2014) Virtual Paleomagnetic Directions. Based on: Ramón and Pueyo, 2012. Automatic calculation of demagnetization intervals; a new approach based on the virtual directions and comparison with linearity spectrum analysis. Geotemas 13:1180–1183
  63. Rey J, Somoza L, Martínez-Frías J (1995) Tectonic, volcanic and hydrothermal event sequence on Deception Island (Antarctica). Geo-Mar Lett 15:1–8CrossRefGoogle Scholar
  64. Rey J, Somoza L, Martínez-Frías J, Benito R, Martín-Alfageme S (1997) Deception Island (Antarctica): a new target for exploration of Fe–Mn mineralization? In: Nicholson K, Hein JR, Bühn B, Dasgupta S (eds), Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol SocLondon Sp Publ 119, pp 239–251Google Scholar
  65. Smellie JL (1990) Graham Land and South Shetland Islands. In: Le Masurier WE, Thomson JW (eds) Volcanoes of the Antarctic plate and southern oceans. Ant Res Series 48, pp 302–359Google Scholar
  66. Smellie JL (1999) The upper Cenozoic tephra record in the south polar region: a review. Glob Planet Chang 21:51–70CrossRefGoogle Scholar
  67. Smellie JL (2001) Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Ant Sci 13(2):188–209CrossRefGoogle Scholar
  68. Smellie JL (2002) Chronology of eruptions of Deception Island. In: López-Martínez J, Smellie JL, Thomson JW, Thomson MRA (eds) Geology and geomorphology of Deception Island, BAS GEOMAP Series, Sheets 6-A and 6-B. British Antarctic Survey, Cambridge, 70 pGoogle Scholar
  69. Smellie JL, López-Martínez J (2000) Geological Map of Deception Island. BAS GEOMAP Series, Sheet 6-A, 1:25,000. British Antarctic Survey, CambridgeGoogle Scholar
  70. Smellie JL, López-Martínez J (2002) Introduction. In: López-Martínez J, Smellie JL, Thomson JW, Thomson MRA (eds) Geology and geomorphology of Deception Island, BAS GEOMAP Series, Sheets 6-A and 6-B. British Antarctic Survey, Cambridge, pp 1–6Google Scholar
  71. Smellie JL, Pankhurst RJ, Thomson MRA, Davies RES (1984) The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution. Brit Ant Surv Sci Rep 85Google Scholar
  72. Smellie JL, Johnson JS, Mcintosh WC, Esser R, Gudmundsson MT, Hambrey MJ, Van Wyk De Vries B (2008) Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 260:122–148CrossRefGoogle Scholar
  73. Speranza F, Pompilio MD’Ajello, Caracciolo F, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113:B09101. doi: 10.1029/2007JB005139 CrossRefGoogle Scholar
  74. Sussman A, Weil AB (2004) Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations. In: Orogenic curvature: integrating paleomagnetic and structural analyses. Geol Soc Am Sp Paper 383, pp 1–12Google Scholar
  75. Takahashi HA, Wada H, Nakamura T, Miura H (1999) 14C anomaly of freshwater algae in Antarctic coastal ponds and lakes. Polar Geosci 12:248–257Google Scholar
  76. Tauxe L, Gans P, Mankinen EA (2004) Paleomagnetism and 40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica. Geochem Geophys Geosyst. doi: 10.1029/2003GC000656 Google Scholar
  77. Uno K, Furukawa K, Ando H, Shinmura T, Miyoshi M (2014) Instantaneous record of the geomagnetic field direction of various facies from pyroclastic flow deposits: tests for consistency in paleomagnetic directions. Phys Earth Planet Int 235:96–106CrossRefGoogle Scholar
  78. Valencio DA, Mendía JE, Vilas JF (1979) Paleomagnetism and K–Ar age of Mesozoic and Cenozoic igneous rocks from Antarctica. Earth Planet Sci Lett 45:61–68CrossRefGoogle Scholar
  79. Valet JP, Soler V (1999) Magnetic anomalies of lava fields in the Canary Islands: possible consequences for paleomagnetic records. Phys Earth Planet Int 115:109–118CrossRefGoogle Scholar
  80. Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus oceans. Cambridge University Press, London, 411 pCrossRefGoogle Scholar
  81. Weaver SD, Saunders AD, Pankhurst RJ, Tarney J (1979) A geochemical study of magmatism associated with the initial stages of back-arc spreading: the quaternary volcanics of Bransfield Strait from South Shetland Islands. Contr Miner Pet 68:151–169CrossRefGoogle Scholar
  82. Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization of shallow level pegmatite-aplite dikes, San Diego County, California. Am Miner 84:708–717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • B. Oliva-Urcia
    • 1
  • I. Gil-Peña
    • 2
  • A. Maestro
    • 1
    • 2
  • J. López-Martínez
    • 1
  • J. Galindo-Zaldívar
    • 3
    • 4
  • R. Soto
    • 5
  • A. Gil-Imaz
    • 6
  • J. Rey
    • 7
  • O. Pueyo
    • 6
  1. 1.Departamento de Geología y Geoquímica, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto Geológico y Minero de EspañaMadridSpain
  3. 3.Departamento de GeodinámicaUniversidad de GranadaGranadaSpain
  4. 4.Instituto Andaluz de Ciencias de la TierraGranadaSpain
  5. 5.Instituto Geológico y Minero de EspañaUnidad de ZaragozaZaragozaSpain
  6. 6.Área de Geodinámica Interna, Departamento de GeologíaUniversidad de ZaragozaZaragozaSpain
  7. 7.ESGEMARMálagaSpain

Personalised recommendations