International Journal of Earth Sciences

, Volume 105, Issue 3, pp 1051–1054 | Cite as

Patterns of criticality in the recent seismic activity in the vicinity of Athens, Greece

  • Elizabeth Dologlou
Original Paper


New data from the Mw 5.4 earthquake on 17 November 2014 in the vicinity of Athens and its seismic electric signal (SES) precursor confirm patterns of criticality in the pre-seismic region during the last preparatory phase. In detail, the stress drop of the main shock and the lead time of the associated SES are interconnected through a power law with an exponent a = 0.327 falling in the range of critical exponents for fracture. We note that this exponent is derived from a large amount of data and successfully passes the z-score statistical test. This fact supports the hypothesis that upon the emission of the SES the pre-focal area enters a critical stage where nonlinear dynamic processes dominate.


Seismic electric signals Critical exponent Evia 


  1. Dologlou E (2008) Possible relationship between Seismic Electric Signals (SES) lead time and earthquake stress drop. Proc Jpn Acad Ser B 84:117–122. doi: 10.2183/pjab.84.117 CrossRefGoogle Scholar
  2. Dologlou E (2010) Power law relationship between parameters of earthquakes and precursory electrical phenomena revisited II. Nat Hazards Earth Syst Sci 10:1403–1409. doi: 10.5194/nhess-10-1403-2010 CrossRefGoogle Scholar
  3. Dologlou E (2012a) Stability of a power law relation between characteristics of earthquakes and electric precursors. Nat Hazards Earth Syst Sci 12:1783–1787. doi: 10.5194/nhess-12-1783-2012 CrossRefGoogle Scholar
  4. Dologlou E (2012b) Testing the critical exponent in the relation between stress drop of earthquake and lead time of seismic electric signal. Nat Hazards Earth Syst Sci 12:2603–2607. doi: 10.5194/nhess-12-2603-2012 CrossRefGoogle Scholar
  5. Dologlou E (2013) Features of criticality in precursory seismic electric signals and earthquakes in Greece. Nonlinear Process Geophys 20:411–416. doi: 10.5194/npg-20-411-2013 CrossRefGoogle Scholar
  6. Dologlou E (2014a) Brief communication: the recent seismic activity in Central Greece in 2013 and its precursory electric signals in terms of criticality. Nonlinear Process Geophys 21:149–153. doi: 10.5194/npg-21-149-2014 CrossRefGoogle Scholar
  7. Dologlou E (2014b) The critical behaviour of a power law between preseismic electric signals and earthquakes of different mechanism in Greece and Japan. Int J Earth Sci 103:397–400. doi: 10.1007/s00531-014-1030-9 CrossRefGoogle Scholar
  8. Dologlou E (2014c) Critical dynamic processes prior to destructive earthquakes. Int J Remote Sens 35:8208–8216. doi: 10.1080/01431161.2014.980921 CrossRefGoogle Scholar
  9. Frazer-Smith AC, Bernardi A, McGrill PR, Ladd ME, Helliwell A, Villard OG (1990) Low frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys Res Lett 17:1465–1468CrossRefGoogle Scholar
  10. Hanks T, Wyss M (1972) The use of body wave spectra in the determination of seismic source parameters. Bull Seism Soc Am 62:561–589Google Scholar
  11. Hayakawa M (2013a) The frontier of earthquake prediction studies. NihonSenmontosho-Shuppan, TokyoGoogle Scholar
  12. Hayakawa M (2013b) Earthquake prediction studies: seismo electromagnetics. Terrapub, TokyoGoogle Scholar
  13. Huang Q (2002) One possible generation mechanism of co-seismic electric signals. Proc Jpn Acad 78:173–178CrossRefGoogle Scholar
  14. Kiratzi AA, Wagner GS, Langston CA (1991) Source parameters of some large earthquakes in northern Aegean determined by body waveform inversion. Pure Appl Geophys (PAGEOPH) 135:515–527CrossRefGoogle Scholar
  15. Orihara Y, Kamogawa M, Nagao T, Uyeda S (2012) Preseismic anomalous telluric current signals observed in Kozu-shima Island, Japan. PNAS 109:19125–19128. doi: 10.1073/pnas.1215669109 CrossRefGoogle Scholar
  16. Ren H, Chen X, Huang Q (2012) Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys J Int 188:925–944. doi: 10.1111/j.1365246X.2011.05309.x CrossRefGoogle Scholar
  17. Sarlis NV, Skordas ES, Lazaridou MS, Varotsos PA (2008) Investigation of the seismicity after the initiation of a Seismic Electric Signal activity until the main shock. Proc Jpn Acad Ser B 84:331–343CrossRefGoogle Scholar
  18. Sarlis NV, Skordas ES, Varotsos PA (2010) Nonextensivity and natural time: the case of seismicity. Phys Rev E 82:article 021110. doi: 10.1103/PhysRevE.82.021110 CrossRefGoogle Scholar
  19. Surkov V, Uyeda S, Tanaka H, Hayakawa M (2002) Fractal properties of medium and seismoelectric phenomena. J Geodyn 33:477–487CrossRefGoogle Scholar
  20. Telesca L, Lapenna V, Macchiato M (2005) Multifractal fluctuations in seismic interspike series. Phys A 354:629–640. doi: 10.1016/j.physa.2005.02.053 CrossRefGoogle Scholar
  21. Teotia SS, Kumar D (2011) Role of multifractal analysis in understanding the preparation zone for large size earthquake in the North-Western Himalaya region. Nonlin Proc Geophys 18:111–118. doi: 10.5194/npg-18-111-2011 CrossRefGoogle Scholar
  22. Varotsos P (2007) Calculation of point defect parameters in diamond. Phys Rev B 75:172107. doi: 10.1103/PhysRevB.75.172107 CrossRefGoogle Scholar
  23. Varotsos P, Alexopoulos K (1977) Calculation of the formation entropy of vacancies due to anharmonic effects. Phys Rev B 15:4111–4114CrossRefGoogle Scholar
  24. Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes I. Tectonophysics 110:73–98CrossRefGoogle Scholar
  25. Varotsos P, Alexopoulos K (1984b) Physical properties of the variations of the electric field of the earth preceding earthquakes, II. Determination of epicentre and magnitude. Tectonophysics 110:99–125CrossRefGoogle Scholar
  26. Varotsos PA, Alexopoulos KD (1986) Thermodynamics of point defects and their relation with the bulk properties. North Holland, AmsterdamGoogle Scholar
  27. Varotsos P, Lazaridou M (1991) Latest aspects of earthquake prediction in Greece based on Seismic Electric Signals. Tectonophysics 188:321–347CrossRefGoogle Scholar
  28. Varotsos P, Alexopoulos K, Lazaridou M (1993) Latest aspects of earthquake prediction in Greece based on Seismic Electric Signals II. Tectonophysics 224:1–37CrossRefGoogle Scholar
  29. Varotsos PA, Sarlis NV, Skordas ES (2002) Long-range correlations in the electric signals that precede rupture. Phys Rev E 66:article 011902. doi: 10.1103/PhysRevE.66.011902 CrossRefGoogle Scholar
  30. Varotsos PA, Sarlis NV, Skordas ES (2009) Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture. CHAOS 19:article 023114. doi: 10.1063/1.3130931 CrossRefGoogle Scholar
  31. Varotsos PA, Sarlis NV, Skordas ES (2011) Natural time analysis: the new view of time. Precursory Seismic Electric Signals, earthquakes and other complex time-series. Springer-Verlag, BerlinCrossRefGoogle Scholar
  32. Varotsos PA, Sarlis NV, Skordas ES (2015a) Fluctuation theorem and natural time analysis. arXiv:1301.7634 v8 [cond-mat.stat-mech] 16 Jan 2015Google Scholar
  33. Varotsos PA, Sarlis NV, Skordas ES, Christopoulos SR, Lazaridou-Varotsos MS (2015b) Identifying the occurrence time of an impending mainshock: a very recent case. Earthq Sci 28:215–222. doi: 10.1007/s11589-015-0122-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Solid State Section, Department of PhysicsUniversity of Athens, PanepistimiopolisAthensGreece

Personalised recommendations