Skip to main content
Log in

Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum-group minerals and remarks on cassiterite, columbite-group minerals and uraninite

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the course of studying the gold-bearing heavy mineral spectrum of sediments from the upper Rhine River, a distinct suite of detrital grains comprising platinum-group minerals (PGM), cassiterite, columbite-group minerals and uraninite was identified and investigated using conventional and modern analytical methods. This study aimed to characterize the selected mineral groups mineralogically and geochemically in order to identify possible source areas and to reconstruct different aspects of the complex sedimentary history of the Rhine River sediments. The PGM assemblage is dominated by grains of Ru–Os–Ir alloys (~70 %), followed by Pt–Fe alloys, sperrylite and rare other PGM. Accordingly, this PGM assemblage represents highly mature, physically and chemically extremely resistant compounds which may have experienced and survived repeated reworking during their sedimentary history. Pt–Fe alloys and sperrylite may originate from various sources; however, the predominant Ru–Os–Ir alloy grains point to an origin from ophiolite sequences of unknown age (but likely pre-Alpine; Variscan or older). The exact locations of the primary sources and the complex, prolonged sedimentary history of the detrital PGM with possibly multiple intermittent storages remain unknown. Detrital cassiterite grains were dated by the U–Pb method using LA-ICP-MS. The age dates of cassiterite largely overlap with zircon age distributions by peaking distinctly at ca. 325 Ma (majority of ages), thereby implying a predominantly Variscan age of the cassiterite grains and possible derivation from mineralization in the Black Forest area. Columbite-group minerals are dominantly tapiolite originating from pegmatites. Rare uraninite grains attest that this mineral experienced rapid erosion, transport and deposition in a reducing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed AH, Arai S (2003) Platinum-group minerals in podiform chromitites of the Oman ophiolite. Can Mineral 41:597–616

    Article  Google Scholar 

  • Biino GG, Meisel T (1993) Geochemistry of polymetamorphic ultramafics (major, trace, noble and rare earth elements): an example from the Helvetic basement (Central Alps, Switzerland). Mineral Petrol 49:189–212

    Article  Google Scholar 

  • Biino GG, Meisel T (1994) Major, trace, noble and rare earth element distribution in polymetamorphic ultramafic rocks (Aar massif, Central Alps, Switzerland). Schweiz Mineral Petrogr Mitt 74:69–86

    Google Scholar 

  • Binde G (1986) Beitrag zur Mineralogie, Geochemie und Genese des Kassiterits. Freiberger Forschungshefte C 411. Deutscher Verlag für Grundstoffindustrie, Leipzig, 60 p

  • Breiter K, Škoda R (2004) Differences in chemistry of magmatic and hydrothermal cassiterite and wolframite from western Krušné hory Mts. Zprávy o geologických výzkumech v roce: 94–96 (in Czech)

  • Burkhard DJM, Page NJ, Amstutz GC (1988) Platinum-group element analyses in the eastern Central Alps, from Davos (Switzerland) to the Valmalenco (Italy). In: Prichard H, Potts P (eds) Geoplatinum ‘87, Elsevier, Amsterdam, pp 176–177

  • Cabri LJ (2002) The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy, and mineral beneficiation of the platinum-group elements. Canadian Institute of Mining Metallurgy and Petroleum, CIM Special Volume 54, pp 13–129

  • Cabri LJ, Harris DC, Weiser TW (1996) The mineralogy and distribution of platinum group mineral (PGM) placer deposits of the world. Explor Min Geol 5:73–167

    Google Scholar 

  • Cawthorn RG (1999) The discovery of the platiniferous Merensky Reef in 1924. S Afr J Geol 102:178–183

    Google Scholar 

  • Černý P, Ercit TS (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull Mineral 108:499–532

    Google Scholar 

  • Cousins CA (1973) Platinoids of the Witwatersrand system. J S Afr Inst Min Metall 73:184–199

    Google Scholar 

  • Depiné M, Frimmel HE, Emsbo P, Koenig AE, Kern M (2013) Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source. Miner Depos 48:423–435

    Article  Google Scholar 

  • Dill H, Gerdes A, Weber B (2007) Cu–Fe–U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: with special reference to laser-ablation-inductive-coupled-plasma mass spectrometry (LA-ICP-MS) of iron-cored torbernite. Mineral Mag 71(4):423–439

    Article  Google Scholar 

  • Dill HG, Klosa D, Steyer G (2009) The “Donauplatin”: source rock analysis and origin of a distal fluvial Au-PGE placer in Central Europe. Mineral Petrol 96:141–161

    Article  Google Scholar 

  • Elsner H (2009) Goldgewinnung in Deutschland—Historie und Potenzial. BGR, Commodity Top News 30

  • Feather CE (1976) Mineralogy of platinum-group minerals in the Witwatersrand, South Africa. Econ Geol 71:1399–1428

    Article  Google Scholar 

  • Feather CE (1981) Some aspects of Witwatersrand mineralization, with special reference to uranium minerals. In: Armstrong FC (ed) USGS Professional Paper, vol 1161. p Q1–Q23

  • Feather CE, Glatthaar CW (1987) A review of uranium-bearing minerals in the Dominion and Witwatersrand placers. In: Pretorius DA (ed) Uranium deposits in Proterozoic quartz-pebble conglomerates. International Atomic Energy Agency, Vienna, pp 355–386

    Google Scholar 

  • Frisch W, Ring U, Dürr S, Borchert S, Biehler D (1994) The Arosa Zone and Platta Nappe ophiolites (Eastern Swiss Alps): geochemical characteristics and their meaning for the evolution of the Penninic Ocean. Jahrb Geologischen Bundesanst Wien 137:19–33

    Google Scholar 

  • Fryer BJ, Taylor RP (1987) Rare-earth element distributions in uraninite: implications for ore genesis. Chem Geol 63:101–108

    Article  Google Scholar 

  • Gäbler H-E, Melcher F, Graupner T, Bahr A, Sitnikova M, Henjes-Kunst F, Oberthür T, Brätz H, Gerdes A (2011) Speeding up the analytical workflow for Coltan fingerprinting by an integrated mineral liberation analysis/LA-ICP-MS approach. Geostand Geoanal Res 35:431–448

    Article  Google Scholar 

  • Garuti G (2011) Global tectonics and chromite-platinum mineralization monitoring genesis and evolution of Ural-Alaskan type complexes. Rev Soc Esp Mineral 15:15–16

    Google Scholar 

  • Garuti G, Gazzotti M, Torres-Ruiz J (1995) Iridium, rhodium and platinum sulfides in chromitites from the ultramafic massifs of Finero, Italy, and Ojén, Spain. Can Mineral 33:509–520

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–62

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243

    Article  Google Scholar 

  • Goldenberg G (1988) Platinmetalle im Rheinsand. Der Aufschluss 39:57–64

    Google Scholar 

  • Goldmann S (2015) Mineralogical-geochemical characterisation of cassiterite and wolframite for an analytical fingerprint of ore concentrates. Ph.D. thesis, Leibniz University, Hannover (submitted)

  • Goldmann S, Melcher F, Gäbler H-E (2011) Fingerprinting of cassiterite and wolframite. Joint Meeting DGK, DMG and ÖMG, Salzburg, Austria. Oldenbourg Verlag, München, p 41

  • Gonzáles-Jiménez JM, Gervilla F, Proenza JA, Augé T, Kerestedjian T (2009) Distribution of platinum-group minerals in ophiolitic chromitites. Appl Earth Sci (Trans Inst Min Metall B) 118:101–110

    Article  Google Scholar 

  • Grandstaff DE (1981) Microprobe analyses of uranium and thorium in uraninite from the Witwatersrand, South Africa, and Blind River, Ontario, Canada. In: Armstrong FC (ed), Genesis of uranium- and gold-bearing Precambrian quartz-pebble conglomerates. USGS Professional Paper, vol 1161, pp J1–J5

  • Häberle D (1930) Das Rheingold, seine Herkunft, Gewinnung und Verwendung. Geogr Z 36(7):385–403

    Google Scholar 

  • Hagedorn E-M (2004) Sedimentpetrographie und Lithofazies der jungtertiären und quartären Sedimente im Oberrheingebiet. PhD thesis, Universität zu Köln

  • Hagen D, Weiser Th, Htay T (1990) Platinum-group minerals in Quaternary gold placers in the upper Chindwin area of northern Burma. Mineral Petrol 42:265–286

    Article  Google Scholar 

  • Harris D, Cabri LC (1991) Nomenclature of platinum-group element alloys: review and revision. Can Mineral 29:231–237

    Google Scholar 

  • HOLCIM (2009) Rheingold®. Ein Mythos wird wahr. www.holcim.de/sued

  • Johan Z (2002) Alaskan-type intrusive complexes and their PGE mineralization. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of the platinum-group elements, vol Special Volume 54. Canadian Institute of Mining, Metallurgy and Petroleum, Westmount, pp 669–719

    Google Scholar 

  • Kirchheimer F (1965) Über das Rheingold. Jh Geol Landesamt Baden-Württemberg 7:55–85

    Google Scholar 

  • Koller F, Höck V (1990) Mesozoic ophiolites in the Eastern Alps. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites, Oceanic Crustal Analogues. Proceedings of the Symposium “Troodos 1987”, pp 253–263

  • Krippner A, Bahlburg H (2013) Provenance of Pleistocene Rhine River Middle Terrace sands between the Swiss–German border and Cologne based on U–Pb detrital zircon ages. Internat J Earth Sci (Geol Rundsch) 102:917–932

    Article  Google Scholar 

  • Krupp R, Oberthür T, Hirdes W (1994) The early Precambrian atmosphere and hydrosphere: thermodynamic constraints from mineral deposits. Econ Geol 89:1581–1598

    Article  Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Lecture notes in earth sciences, vol 32. Springer, Berlin

    Google Scholar 

  • Liebenberg WR (1955) The occurrence and origin of gold and radioactive minerals in the Witwatersrand system, the Dominion Reef, the Ventersdorp Contact Reef and the Black Reef. Geol Soc S Afr Trans 58:101–227

    Google Scholar 

  • Ma C, Beckett JR, Rossman GR (2009) Allendeite and hexamolybdenum: two new ultra-refractory minerals in Allende and two missing links. In: 40th Lunar and Planetary Science Conference and Abstracts, 1402

  • Malitch KN, Badanina I (1998a) Natural polycomponent solid solutions of the system Ru–Os–Ir–Pt–Fe and their genetic and applied significance. Doklady Earth Sci 363(8):1089–1092 (translated from Doklady Akademii Nauk 363 (1): 93-96)

    Google Scholar 

  • Malitch KN, Badanina I (1998b) Natural polycomponent solid solutions of the system Ru–Os–Ir–Pt–Fe: their genetic and applied significance. In: 8th International Platinum Symposium. Abstracts. Johannesburg: The S Afr Inst Mining Metall, Symposium Series, vol S18. pp 225–227

  • Malitch KN, Melcher F, Mühlhans H (2001) Palladium and gold mineralization in podiform chromitite at Kraubath, Austria. Mineral Petrol 73:247–277

    Article  Google Scholar 

  • Malitch KN, Junk SA, Thalhammer OAR, Melcher F, Knauf VV, Pernicka E, Stumpfl EF (2003a) Laurite and ruarsite from podiform chromitites at Kraubath and Hochgrössen, Austria: new insights from osmium isotopes. Can Mineral 41:331–352

    Article  Google Scholar 

  • Malitch KN, Thalhammer OAR, Knauf VV, Melcher F (2003b) Diversity of platinum-group mineral assemblages in an Eastern Alpine ophiolite: a case study of banded and podiform chromitite from the Kraubath ultramafic massif, Austria. Mineral Depos 38:282–297

    Google Scholar 

  • Markl G, Schumacher JC (1996) Spatial variations in temperature and composition of greisens-forming fluids: an example from the Variscan Triberg granite complex, Germany. Econ Geol 91:576–589

    Article  Google Scholar 

  • Meisel T, Biino GG, Nägler TF (1996) Re–Os, Sm–Nd and rare earth element evidence for Proterozoic oceanic and possible subcontinental lithosphere in tectonized ultramafic lenses from the Swiss Alps. Geochim Cosmochim Acta 60:2583–2593

    Article  Google Scholar 

  • Melcher F (2000) Base metal—platinum group element sulfides from the Urals and the Eastern Alps: characterization and significance for mineral systematics. Mineral Petrol 68:177–211

    Article  Google Scholar 

  • Melcher F, Mali H (1998) Platingruppenminerale in Chromititen von Kraubath. Mitt Abt Miner Landesmuseum Joanneum 62(63):39–48

    Google Scholar 

  • Melcher F, Meisel T, Puhl J, Koller F (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65:69–112

    Article  Google Scholar 

  • Melcher F, Oberthür T, Lodziak J (2005) Modification and alteration of detrital platinum-group minerals from the Eastern Bushveld Complex, South Africa. Can Mineral 43:1711–1734

    Article  Google Scholar 

  • Melcher F, Graupner T, Gäbler H-E, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719

    Article  Google Scholar 

  • Merensky H (1924) The various platinum occurrences on the farm Maandagshoek No. 148. Unpublished memorandum to Lydenburg Platinum Syndicate. Archives of the Merensky Trust, Duivelskloof, South Africa

  • Merensky H (1926) Die neuentdeckten Platinfelder im mittleren Transvaal und ihre wirtschaftliche Bedeutung. Z Deut Geol Ges 78:296–314

    Google Scholar 

  • Mertie JB (1969) Economic geology of the platinum metals. US Geology Survey Professional Paper 630

  • Meyer FM, Kolb J, Skallaris GA, Gerdes A (2006) New ages from the Mauritanides: recognition of Archean IOCG mineralization at Guelb Moghrein, Mauritania. Terra Nova 18:345–352

    Article  Google Scholar 

  • Millonig LJ, Gerdes A, Groat LA (2013) The effect of amphibolite facies metamorphism on the U–Th–Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. Chem Geol 353:199–209

    Article  Google Scholar 

  • Müntener O, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lower crustal granulite and upper mantle (Malenco, Eastern Central Alps). J Petrol 41:175–200

    Article  Google Scholar 

  • Neiva AMR (1996) Geochemistry of cassiterite and its inclusions and exsolution products from tin and tungsten deposits of Portugal. Can Mineral 34:745–768

    Google Scholar 

  • Oberthür T (2013) Comments on “Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source” by Depiné et al. (Mineral Depos 48: 423–435). Mineral Depos 48:1047–1050

    Article  Google Scholar 

  • Oberthür T, Weiser ThW, Gast L, Schoenberg R, Davis DW (2002) Platinum-group minerals and other detrital components in the Karoo-age Somabula gravels, Gweru, Zimbabwe. Can Mineral 40:435–456

    Article  Google Scholar 

  • Oberthür T, Melcher F, Gast L, Wöhrl C, Lodziak J (2004) Detrital platinum-group minerals in rivers draining the eastern Bushveld Complex, South Africa. Can Mineral 42:563–582

    Article  Google Scholar 

  • Oberthür T, Melcher F, Henjes-Kunst F, Gerdes A, Stein H, Zimmerman A, El Ghorfi M (2009) Hercynian age of the cobalt–nickel–arsenide–(gold) ores, Bou Azzer, Anti-Atlas, Morocco: Re–Os, Sm–Nd and U–Pb age determinations. Econ Geol 104:1065–1079

    Article  Google Scholar 

  • Oberthür T, Weiser TW, Melcher F, Gast L, Wöhrl C (2013) Detrital platinum-group minerals in rivers draining the Great Dyke, Zimbabwe. Can Mineral 51:197–222

    Article  Google Scholar 

  • Oberthür T, Weiser TW, Melcher F (2014) Alluvial and eluvial platinum-group minerals (PGM) from the Bushveld complex, South Africa. S Afr J Geol 117(2):255–274

    Article  Google Scholar 

  • Piskulov M (2012) The Russian PGM mining industry. Platin Met Rev 56:202

    Article  Google Scholar 

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP” in microprobe analysis. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Press S (1986) Detrital spinels from alpinotype source rocks in middle Devonian sediments of the Rhenish Massif. Geol Rundsch 75(2):333–340

    Article  Google Scholar 

  • Prichard HM, Tarkian M (1988) Platinum and palladium minerals from two PGE-rich localities in the Shetland ophiolites complex. Can Mineral 26:979–998

    Google Scholar 

  • Ramdohr P (1958) New observations on the ores of the Witwatersrand in South Africa and their genetic significance. Geol Soc S Afr Trans 61:1–50

    Google Scholar 

  • Ramdohr P (1965) Rheingold als Seifenmineral. Jh Geol Landesamt Baden-Württemberg 7:87–95

    Google Scholar 

  • Schidlowski M (1966) Beiträge zur Kenntnis der radioaktiven Bestandteile der Witwatersrand-Konglomerate. I—Uranpecherz. N Jb Miner Abh 105:183–202

    Google Scholar 

  • Schidlowski M (1970) Untersuchungen zur Metallogenese im südwestlichen Witwatersrand-Becken (Oranje-Freistaat-Goldfeld, Südafrika). Geol Jahrb Beiheft 85:1–80

    Google Scholar 

  • Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for the Witwatersrand metallogeny. In: Armstrong FC (ed) Genesis of uranium- and gold-bearing Precambrian quartz-pebble conglomerates. US Geological Survey Professional Paper 1161, pp N1–N29

  • Schuster N, Wolf D (2011) Platin in Sachsen-Anhalt. Lapis 36(12):30–37

    Google Scholar 

  • Simpson PR, Bowles JFW (1977) Uranium mineralisation of the Witwatersrand and Dominion Reef Systems. R Soc Lon Philos Trans A 286:527–547

    Article  Google Scholar 

  • Sindern S, Meyer FM, Lögering MJ, Kolb J, Vennemann T, Schwarzbauer J (2012) Fluid evolution at the Variscan front in the vicinity of the Aachen thrust. Int J Earth Sci (Geol Rundsch) 101:87–108

    Article  Google Scholar 

  • Slama J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–5

    Article  Google Scholar 

  • Thalhammer OAR, Prochaska W, Mühlhans HW (1990) Solid inclusions in chrome-spinels and platinum-group element concentrations from the Hochgrössen and Kraubath ultramafic massifs (Austria). Contrib Mineral Petrol 105:66–80

    Article  Google Scholar 

  • van Andel TH (1950) Provenance, transport and deposition of Rhine sediments. Wageningen, Veenman ond Zonen

    Google Scholar 

  • Villinger E (1998) Zur Flußgeschichte von Rhein und Donau in Südwestdeutschland. Jahresber Mitt Oberrh Geol Ver 80:361–398

    Google Scholar 

  • Vollbrecht A, Oberthür T, Ruedrich J, Weber K (2002) Microfabric analyses applied to the Witwatersrand gold- and uranium-bearing conglomerates: constraints on the provenance and post-depositional modification of rock and ore components. Mineral Depos 37:433–451

    Article  Google Scholar 

  • Wagner PA (1929) The platinum deposits and mines of South Africa. Oliver & Boyd, London

    Google Scholar 

  • Weiser TW (2002) Platinum-group minerals (PGM) in placer deposits. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of the platinum-group elements. Canadian Institute of Mining Metallurgy and Petroleum, Westmount, pp 721–756

    Google Scholar 

  • Werchau A, Schleicher H, Kramm U (1989) Erste Altersbestimmungen an Monaziten des Schwarzwaldes. Eur J Mineral Beiheft 1:198

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Wise MA, Černý P (1996) The crystal chemistry of the tapiolite series. Can Mineral 34:631–647

    Google Scholar 

  • Wolf D, Borg G, Rollinson G, Schuster N, Stedingk K (2010) Gold und Platingruppenminerale in Kiessanden der mittleren Saale und Weißen Elster, Sachsen-Anhalt. Glückauf 146(11):565–570

    Google Scholar 

  • Minifossi Webpage: http://minifossi.pcom.de

Download references

Acknowledgments

Many thanks go to Hans-Joachim Sturm (BGR) for drafting Fig. 1. Continuous and professional work at the EPMA and the SEM was ably performed by Jerzy Lodziak, Christian Wöhrl and Detlev Klosa (BGR) and is gratefully acknowledged. We are indebted for the thoughtful and critical contributions of two reviewers, anonymous and H. Bahlburg, which significantly improved both the flow of the text and the clarity of presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Oberthür.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2015_1181_MOESM1_ESM.xls

LA-ICPMS spot analyses of individual zircon and cassiterite grains in polished section of concentrate from Rheinzabern (XLS 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberthür, T., Melcher, F., Goldmann, S. et al. Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum-group minerals and remarks on cassiterite, columbite-group minerals and uraninite. Int J Earth Sci (Geol Rundsch) 105, 637–657 (2016). https://doi.org/10.1007/s00531-015-1181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1181-3

Keywords

Navigation