Skip to main content
Log in

The transition from thick-skinned to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: the Burgalesa Platform and surroundings

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Interpretation of seismic data in the margins of the Burgalesa Platform in the Basque-Cantabrian Pyrenees has allowed proposition of a new structural model that combines different modes of deformation during oblique tectonic inversion, conditioned by the distribution of Triassic salts. Deformation was decoupled by the presence of the salt horizon between basement-involved thrusts inverting formerly Triassic and Late Jurassic–Early Cretaceous extensional faults and a detached thrust system involving the Upper Triassic to Neogene sedimentary package. Structural units experiencing different styles of deformation are not only stacked vertically above and below the salt, but most importantly, they change from one to the other along-strike across the transversal edges of the Triassic salts. The Burgalesa Platform detached thrust system was confined between the basement-involved structures of the Cantabrian Mountains westward and the NW tip of the Iberian basement-involved structures (San Pedro) southward. This together with the obliquity between the Pyrenean shortening direction and the strike of the previous extensional faults, mostly during the late stages of deformation, determined the strike-slip reactivation of the basement-involved inverted faults and the lateral extrusion of the Burgalesa Platform detached Mesozoic successions above the salt towards the SE to form a prominent thrust salient oblique to the main Pyrenean trend. The proposed model combines thick-skinned with thin-skinned structural styles during oblique tectonic inversion and is consistent with the surface data, including the fracture system, the available subsurface data and the mechanical stratigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aguilar MJ (1971) Correlaciones por ciclos de aporte en el Albense de la Cuenca Cantábrica. Acta Geol Hisp 6:92–96

    Google Scholar 

  • Alonso JL (1987) Estructura y evolución tectonoestratigráfica de la región del Manto del Esla (Zona Cantábrica NW de España). Tesis Doctoral. Universidad de Oviedo

  • Alonso JL, Pulgar JA, García-Ramos JC, Barba P (1996) Tertiary basins and Alpine tectonics in the Cantabrian Mountains. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, pp 214–227

    Chapter  Google Scholar 

  • Alonso JL, Pulgar JA, Pedreira D (2007) Relieve de la Cordillera Cantábrica. Enseñanza de las Ciencias de la Tierra 15(2):151–163

    Google Scholar 

  • Alonso JL, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 7:451–473

    Article  Google Scholar 

  • Álvarez-Marrón J, Pérez-Estaún A, Danñobeitia JJ, Pulgar JA, Martínez Catalán R, Marcos A, Bastida F, Ayarza Arribas P, Aller J, Gallart A, Gonzalez-Lodeiro F, Banda E, Comas MC, Córdoba D (1996) Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles. Tectonophysics 264:153–174

    Article  Google Scholar 

  • Álvaro M, Capote R, Vegas R (1979) Un modelo de evolución geotectónica para la cadena Celtibérica. Acta Geol Hisp 14:172–181

    Google Scholar 

  • Amilibia A, Sàbat F, McClay KR, Muñoz JA, Roca E, Chong C (2008) The role of inherited tectono-sedimentary architecture in the development of central Andean mountain belt: Insights from the Cordillera de Domeyko. J Struct Geol 30:1520–1539

    Article  Google Scholar 

  • Aurell M, Robles S, Bádenas B, Rosales I, Quesada S, Meléndez G, García-Ramos JC (2003) Transgressive–regressive cycles and Jurassic paleogeography of northeast Iberia. Sed Geol 162:239–271. doi:10.1016/S0037-0738(03)00154-4

    Article  Google Scholar 

  • Badley ME, Price J-D, Backshall LC (1989) Inversion, reactivated faults and related structures: seismic examples from the southern North Sea. In: Cooper MA, Williams GD (eds) Geological Society Spececial Publications vol 44, pp. 201–219

  • Bahroudi A, Koyi HA (2003) Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach. J Geol Soc Lond 160:719–733. doi:10.1144/0016-764902-135

    Article  Google Scholar 

  • Barnolas A, Pujalte V (2004) La Cordillera Pirenaica. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 233–343

    Google Scholar 

  • Bassi G (1995) Relative importance of strain rate and rheology for the mode of continental extension. Int J Geophys 122:195–210

    Article  Google Scholar 

  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P (2000) Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J Geophys Res 105:8121–8145

    Article  Google Scholar 

  • Bois C, Pinet B, Gariel O (1997) The sedimentary cover along the ECORS Bay of Biscay deep seismic reflection profile. A comparison between the Parentis basin and other European rifts and basins. Mémoires de la Societé Géologique de France 171:143–165

    Google Scholar 

  • Boyer S (1995) Sedimentary basin taper as a factor controlling the geometry and advance of thrust belts. Am J Sci 295:1220–1254

    Article  Google Scholar 

  • Bug JP, Gerya TV (2005) The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J Metamorph Geol 23:75–95

    Article  Google Scholar 

  • Butler RWH (1989) The influence of pre-existing basin structure on thrust system evolution in the Western Alps. In: Cooper MA, Williams GD (eds) Geological Society Spececial Publications vol 44, pp 105–122

  • Butler RWH, Tavarnelli E, Grasso M (2006) Structural inheritance in mountain belts: an Alpine–Apennine perspective. J Struct Geol 28:1893–1908. doi:10.1016/j.jsg.2006.09.006

    Article  Google Scholar 

  • Calassou S, Larroque C, Malavielle J (1993) Transfer zones of deformation in thrust wedges: an experimental study. Tectonophysics 221:325–344

    Article  Google Scholar 

  • Carola E, Tavani S, Ferrer O, Granado P, Quintà A, Butillé M, Muñoz JA (2013) Along-strike extrusion at the transition between thin- and thick-skinned domains in the Pyrenean orogen (northern Spain). In: Nemcok M, Mora AR, Cosgrove JW (eds) Thick-skin-dominated orogens: from initial inversion to full accretion, vol 377. Geological Society of London Special Publications, London. doi:10.1144/SP377.3

    Google Scholar 

  • Carrera N, Muñoz JA, Sàbat F, Mon R, Roca E (2006) The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes). J Struct Geol 28:1921–1932

    Article  Google Scholar 

  • Cartwright J, Jackson M, Dooley T, Higgins S (2012) Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence. In: Alsop GI, Archer SG, Hartley AJ, Grant NT, Hodgkinson R (eds) Salt tectonics, sediments and prospectivity, vol 363. Geological Society of London Special Publications, London, pp 449–470

    Google Scholar 

  • Chapman TJ (1989) The Permian to Cretaceous structural evolution of the Western approaches Basin (Melville sub-basin), UK. In: Cooper MA, Williams GD (eds) Geological Society Special Publications vol 44, pp 177–200

  • Corrado S, Bucci D, Naso G, Faccenna C (1998) Influence of paleogeography on thrust system geometries: an analogue modelling approach from the Abruzzi–Molise (Italy) case history. Tectonophysics 296:437–453

    Article  Google Scholar 

  • Coward MP (1994) Inversion tectonics. In: Hancock PL (ed) Continental deformation. Pergamon, Oxford, pp 289–304

    Google Scholar 

  • Coward MP, Stewart S (1995) Salt-induced structures in the Mesozoic–Tertiary cover of the southern North Sea UK. In: Jackson MPA, Roberts DG, Snelson S (eds). Salt tectonics: a global perspective. AAPG Memoir 65:229–250

  • Cuevas J, Aranguren A, Badillo JM, Tubía J (1999) Estudio estructural del sector central del Arco Vasco (cuenca Vasco-Cantábrica). Boletín Geológico y Minero 110:3–18

    Google Scholar 

  • Dahlen FA (1990) Critical taper model of fold-and-thrust belts and accretionary wedges. Ann Rev Earth Planet Sci 18:55–99

    Article  Google Scholar 

  • Dahlstrom CDA (1970) Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull Can Pet Geol 18(332):406

    Google Scholar 

  • Davis DM, Engelder T (1985) The role of salt in fold-and-thrust belts. Tectonophysics 119:67–88

    Article  Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172

    Article  Google Scholar 

  • Durand-Riard P, Shaw JH, Plesch A, Lufadeju G (2013) Enabling 3D geomechanical restoration of strike- and oblique-slip faults using geological constraints, with applications to the deep-water Niger Delta. J Struct Geol 48:33–44. doi:10.1016/j.jsg.2012.12.2009

    Article  Google Scholar 

  • Ellis S, Beaumont C, Jamieson RA, Quinlan G (1998) Continental collision including a weak zone: the vise model and its application to the Newfoundland Appalachians. Can J Earth Sci 35:1323–1346

    Article  Google Scholar 

  • Erslev E (1993) Thrusts, back-thrusts, and detachments of Rocky Mountain foreland arches. In: Schmidt CJ, Chase RB, Erslev EA (eds) Laramide basement deformation in the Rocky Mountain Foreland of the Western Unites States: Boulder, Colorado. Geological Society of America Special Paper vol 280, pp 339–358

  • Espina RG (1997) La estructura y evolución tectonoestratigráfica del borde occidental de la Cuenca Vasco-Cantábrica (Cordillera Cantábrica, NO de España). PhD Thesis, Univerity of Oviedo

  • Espina RG, De Vicente G, Muñoz Martín A (1996) Análisi poblacional de fallas alpinas en el borde occidenteal de la Cuenca Vasco-Cantábrica (Cordillera Cantábrica, NO de España). Geogaceta 20:936–938

    Google Scholar 

  • Ferrer O, Roca E, Benjumea B, Muñoz JA, Ellouz N, Team MARCONI (2008) The deep seismic reflection MARCONI-3 profile: role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Mar Pet Geol 25(8):714–730. doi:10.1016/j.marpetgeo.2008.06.002

    Article  Google Scholar 

  • Fillon C (2012) Spatial and temporal variation in Cenozoic exhumation of the Pyrenean–Cantabrian mountain belt: coupling between tectonics and surface processes. PhD Thesis. Institut des Sciences de la Terre de Grenoble (ISTerre), Grenoble, France

  • Fischer MP, Jackson PB (1999) Stratigraphic controls on deformation patterns in fault-related folds: a detachment fold example from the Sierra Madre Oriental, northeast Mexico. J Struct Geol 21:613–633

    Article  Google Scholar 

  • Gallastegui J (2000) Estructura cortical de la Cordillera y Margen Continental Cantábricos: perfiles ESCI-N. Trab Geol 22:9–234

    Google Scholar 

  • Gallastegui J, Pulgar JA, Gallart J (2002) Initiation of an active margin at the North Iberian continent-ocean transition. Tectonics. doi:10.1029/2001TC901046

    Google Scholar 

  • García de Cortázar A, Pujalte V (1982) Litoestratigrafía y facies del grupo Cabuérniga (Malm-Valanginiense Inferior?) al S deCantabria-NE de Palencia. Cuadernos Geología Ibérica 8:5–21

    Google Scholar 

  • García-Mondéjar J, Pujalte V, Robles S (1986) Características sedimentológicas secuenciales y tectoestratigráficas del Triásico de Cantabria y Norte de Palencia. Cuad Geol Ibérica 10:151–172

    Google Scholar 

  • García-Mondéjar J, Agirrezabala LM, Aranburu A, Fernández-Mendiola PA, Gómez-Pérez I, López-Horgue M, Rosales I (1996) Aptian–Albian tectonic pattern of the Basque-Cantabrian Basin (northern Spain). Geol J 31:13–45

    Article  Google Scholar 

  • Guimerà J (1984) Palaeogene evolution of deformation in the north–east Iberian Peninsula. Geol Mag 121:413–420

    Article  Google Scholar 

  • Guimerà J, Alonso A, Mas R (1995) Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros Basin (N Spain). In: Buchanan JG, Buchanan PG (eds) Basin inversion, vol 88. Geological Society of London Special Publications, London, pp 433–453

    Google Scholar 

  • Guimerà J, Mas R, Alonso Á (2004) Intraplate deformation in the NW Iberian Chain: Mesozoic extension and tertiary contractional inversion. J Geol Soc Lond 161:291–303

    Article  Google Scholar 

  • Hempel PM (1967) Der diapir von Poza de la Sal (Nordspanien). Beiheft Geologisches Jahrbuch 66:95–126

    Google Scholar 

  • Hernáiz PP (1994) La falla de Ubierna (margen SO de la cuenca Cantábrica). Geogaceta 16:39–42

    Google Scholar 

  • Hernáiz PP, Solé J (2000) Las estructuras del diapiro de Salinas del Rosío y del alto de San Pedro-Iglesias y sus implicaciones en la evolución tectónica de la transversal burgalesa de la Cordillera Vascocantábrica-Cuenca del Duero. Rev Soc Geol Esp 13:471–486

    Google Scholar 

  • Hernáiz PP, Serrano A, Malagón J, Rodríguez Cañas C (1994) Evolución estructural del margen SO de la cuenca Vasco Cantábrica. Geogaceta V15:143–146

    Google Scholar 

  • Hernández JMª, Pujalte V, Robles S, Martín-Closas C (1999) División estratigráfica genética del grupo Campóo (Malm-Cretácico Inferior, SW Cuenca Vascocantábrica). Rev Soc Geol Esp 12:377–396

    Google Scholar 

  • Hill KC, Kendrick RD, Crowhurst PV, Gow PA (2002) Copper–gold mineralisation in New Guinea: tectonics, lineaments, thermochronology and structure. Aust J Earth Sci 49:737–752

    Article  Google Scholar 

  • Holdsworth RE (2004) Weak faults, rotten cores. Science 303:181–182. doi:10.1126/science.1092491

    Article  Google Scholar 

  • Hudec MR, Jackson MPA (2007) Terra infima: understanding salt tectonics. Earth-Sci Rev 82:1–28. doi:10.1016/j.earscirev.2007.01.001

    Article  Google Scholar 

  • Jammes S, Huismans RS (2012) Structural styles of mountain building: controls of lithospheric rheologic stratification and extensional inheritance. J Geophys Res 117:1978–2012

    Google Scholar 

  • Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: the example of the western Pyrenees. Tectonics 28:TC4012. doi:10.1029/2008TC002406

    Article  Google Scholar 

  • Jammes S, Huismans RS, Muñoz JA (2014) Lateral variations in structural style of mountain building: controls of rheological and rift inheritance. Terra Nova. doi:10.1111/ter.12087

    Google Scholar 

  • Jaumé SC, Lillie RJ (1988) Mechanics of the Salt Range–Potwar Plateau, Pakistan: a fold-and-thrust belt underlain by evaporites. Tectonics 7:57–71

    Article  Google Scholar 

  • Koopman A, Speksnijder A, Horsfield WT (1987) Sandbox model studies of inversion tectonics. Tectonophysics 137:379–388

    Article  Google Scholar 

  • Lacoste A, Vendeville BC, Mourgues R, Loncke L, Lebacq M (2012) Gravitational instabilities triggered by fluid overpressure and downslope incision—insights from analytical and analogue modelling. J Struct Geol 42:151–162. doi:10.1016/j.jsg.2012.05.011

    Article  Google Scholar 

  • Lanaja JM (1987) Contribución de la exploración petrolífera al conocimiento de la Geología de España. IGME Serv Oubl Min Indust Energ, Madrid

  • Le Pichon X, Sibuet JC (1971) Western extension of boundary between European and Iberian plates during the Pyrenean orogeny. Earth Planet Sci Lett 12:83–88. doi:10.1016/0012-821X(71)90058-6

    Article  Google Scholar 

  • Luján M, Storti F, Balanyá JC, Crespo-Blanc A, Rossetti F (2003) Role of décollement material with different rheological properties in the structure of the Aljibe thrust imbricate (Flysch Trough, Gibraltar Arc): an analogue modelling approach. J Struct Geol 25:867–881. doi:10.1016/S0191-8141(02)00087-1

    Article  Google Scholar 

  • Macedo J, Marshak S (1999) Controls on the geometry of fold-thrust belt salients. Geol Soc Am Bull 111:1808–1822

    Article  Google Scholar 

  • Malagón J, Hernáiz PP, Rodríguez Cañas C, Serrano A (1994) Notas sobre la inversión tectónica y aloctonia de la cuenca Vasco-Cantábrica. Geogaceta 15:139–142

    Google Scholar 

  • Marshak S (2004) Salients, recesses, arcs, oroclines, and syntaxesda review of ideas concerning the formation of map-view curves in fold-thrust belts. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems. Memoir of the American Association of Petroleum Geologists vol 82, pp 131–156

  • Martínez-Torres LM (1993) Corte balanceado de la Sierra Cantabria (cabalgamiento de la Cuenca Vasco-Cantábrica sobre la Cuenca del Ebro). Geogaceta 14:113–115

    Google Scholar 

  • Martín-González F, Heredia N (2011) Complex tectonic and tectonostratigraphic evolution of an Alpine foreland basin: the western Duero Basin and the related Tertiary depressions of the NW Iberian Peninsula. Tectonophysics 502:75–89. doi:10.1016/j.tecto.2010.03.002

    Article  Google Scholar 

  • Mathieu C (1986) Histoire géologique du sous-basin de Parentis. Bulletin des Centres de Recherches Elf-Aquitaine (Production) 10:33–47

    Google Scholar 

  • Mazzoli S, D’Errico M, Allega L, Corrado S, Invernizzi C, Shiner P, Zattin M (2008) Tectonic burial and ‘young’ (b10 Ma) exhumation in the southern Apennines fold and thrust belt (Italy). Geology 36:243–246

    Article  Google Scholar 

  • McClay KR (1989) Analogue models of inversion tectonics. In: Cooper MA, Williams GD (eds) Geological Society Spececial Publications vol 44, pp 41–59

  • McQuarrie N, DeCelles P (2001) Geometry and structural evolution of the central Andean backthrust belt, Bolivia. Tectonics 20:669–692

    Article  Google Scholar 

  • Mitra G (1997) Evolution of salients in a fold-and-thrust belt: the effects of sedimentary basin geometry, strain distribution and critical taper. In: Sengupta S (ed) Evolution of geological structures in micro- to macro-scales. Chapman and Hall, London, pp 59–90

    Chapter  Google Scholar 

  • Montadert L, Charpal O, Roberts DG, Guennoc P, Sibuet JC (1979) Northeast Atlantic passive margins: rifting and subsidence processes. Am Geophys Union Rev 3:154–186

    Google Scholar 

  • Mouthereau F, Lacombre O (2006) Inversion of the Paleogene Chinese continental margin and thick-skinned deformation in the Western Foreland of Taiwan. J Struct Geol 28:1977–1993

    Article  Google Scholar 

  • Mouthereau F, Watts AB, Burov E (2013) Structure of orogenic belts controlled by lithosphere age. Nat Geosci 6:785–789

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced section. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz JA (2002) The Pyrenees. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society of London, London, pp 370–385

    Google Scholar 

  • Nemock M, Mora A, Cosgrove J (2013) Thick-skin-dominated orogens; from initial inversion to full accretion. Geological Society of London Special Publication, p 377

  • Pedreira D, Pulgar JA, Gallart J, Díaz J (2003) Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia). J Geophys Res. doi:10.1029/2001JB001667

    Google Scholar 

  • Pedreira D, Pulgar JA, Gallart J, Torné M (2007) Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees–Cantabrian Mountains. J Geophys Res. doi:10.1029/2007JB005021

    Google Scholar 

  • Peel F, Travis CJ, Hossack JR (1995) Genetic structural provinces and salt tectonics of the Cenozoic offshore US gulf of Mexico: a preliminary analysis. In: Jackson MPA, Roberts DG, Snelson S (eds). Salt tectonics: a global perspective. AAPG Memoir vol 65, pp 153–175

  • Pérez-Estaún A, Bastida F, Alonso JL, Marquinez J, Aller J, Álvarez-Marrón J, Marcos A, Pulgar J (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7:517–537

    Article  Google Scholar 

  • Pérez-Estaún A, Martínez-Catalán JR, Bastida F (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan belt of northwest Spain. Tectonophysics 191:243–253. doi:10.1016/0040-1951(91)90060-6

    Article  Google Scholar 

  • Pfiffner OA (2006) Thick-skined and thin-skined styles of continental contraction. In: Mazzoli S, Butler RWH (eds) Styles of continental contraction. Geological Society of America Special Paper, vol 414, pp 153–177. doi:10.1130/2006.2414(09)

  • Portero JM, Ramírez del Pozo J, Aguilar M (1979) Mapa geológico 1:50.000, Hoja 170 (Haro). IGME

  • Pujalte V (1981) Sedimentary succession and palaeoenvironments within fault-controlled basin: the “Wealden” of the Santander area, Northern Spain. Sed Geol 28:293–325

    Article  Google Scholar 

  • Pujalte V (1982) La evolución paleogeográfica de la cuenca “Wealdense” de Cantabria. Cuad Geol Ibérica 8:65–83

    Google Scholar 

  • Pujalte V, Robles S, Valles JC (1988) El Jurásico marino de las zonas de alto sedimentario relativo del borde SW de la Cuenca Vasco–Cantábrica (Rebolledo de la Torre, Palencia). In: III Coloquio de Estratigrafía y Paleogeografía del Jurásico de España. Libro guía de las excursiones. Ciencias de la Tierra (Instituto de Estudios Riojanos) 11:85–94

  • Pujalte V, Robles S, Hernández JMª (1996) La sedimentación continental del Grupo Campóo (Malm-Cretácico basal de Cantabria, Burgos y Palencia): testimonio de un reajuste hidrográfico al inicio de una fase rift. Cuad Geol Ibérica 21:227–251

    Google Scholar 

  • Pujalte V, Robles S, García-Ramos JC, Hernández JM (2004) El Malm-Barremiense no marinos de la Cordillera Cantábrica. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 288–291

    Google Scholar 

  • Pulgar JA, Pérez-Estaún A, Gallart J, Álvarez-Marrón J, Gallastegui J, Alonso JL, ESCIN Group (1997) The ESCIN-2 deep seismic reflection profile: a traverse across the Cantabrian Mountains and adjacent Duero basin. Revista Sociedad Geológica de España 8:383–394

  • Pulgar JA, Alonso JL, Espina RG, Marín JA (1999) La deformación alpina en el basamento varisco de la Zona Cantábrica. Trab Geol 21:283–294

    Google Scholar 

  • Quesada S, Robles S, Pujalte V (1991) Correlación secuencial y sedimentológica entre registros de sondeos y series de superficie del Jurásico Marino de la Cuenca de Sanander (Cantabria, Palencia y Burgos). Geogaceta 10:3–10

    Google Scholar 

  • Quesada S, Robles S, Pujalte V (1993) El Jurásico Marino del margen suroccidental de la Cuenca Vasco-Cantábrica y su relación con la exploración de hidrocarburos. Geogaceta 13:92–96

    Google Scholar 

  • Quesada S, Robles S, Rosales I (2005) Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque-Cantabrian basin, northern Spain. J Geol Soc Lond 162:531–548

    Article  Google Scholar 

  • Quintà A, Tavani S (2012) The foreland deformation in the south-western Basque–Cantabrian Belt (Spain). Tectonophysics 576–577:4–19. doi:10.1016/j.tecto.2012.02.015

    Article  Google Scholar 

  • Quintà A, Tavani S, Roca E (2012) Fracture pattern analysis as a tool for constraining the interaction between regional and diapir-related stress field: Poza de la Sal Diapir (Basque Pyrenees, Spain). In: Alsop GI, Archer SG, Hartley AJ, Grant NT, Hodgkinson R (eds) Salt tectonics, sediments and prospectivity. Geological Society of London Special Publications vol 363, pp 521–532

  • Quintana L (2012) Extensión e inversión tectónica en el sector central de la región Vasco-Cantábrica (Cantabria, Vizcaya, norte de España). PhD Thesis. Universidad de Oviedo, Oviedo. Spain

  • Ramírez del Pozo J (1971) Bioestratigrafía y Microfacies del Jurássico y Cretácico del Norte de España (Región Cantábrica). Memorias Instituto Geológico y Minero de España 78:1–357

  • Robles S, Pujalte V, Valles JC (1989) Sistemas sedimentarios del Jurásico de la parte occidental de la Cuenca Vasco-Cantatábrica. Cuadernos Geología Ibérica 13:185–198

    Google Scholar 

  • Robles S, Quesada S, Rosales I, Aurell M, García-Ramos JC (2004) El Jurásico marino de la Cordillera Cantábrica. In: Vera JA (ed) Geología de España. SGE IGME, Madrid, pp 279–285

    Google Scholar 

  • Roca E, Muñoz JA, Ferrer O, Ellouz N (2011) The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: constraints from the MARCONI deep seismic reflection survey. Tectonics 30:1. doi:10.1029/2010TC002735

    Article  Google Scholar 

  • Rodríguez Cañas C, Hernáiz PP, Malagón J, Serrano A (1994) Notas sobre la estructura cabalgante de Rojas-Santa Casilda. Geogaceta 15:135–138

    Google Scholar 

  • Rowan M (2014) Passive-margin salt basins: hyperextension, evaporite depositioon, and salt tectonics. Basin Res 26:154–182. doi:10.1111/bre.12043

    Article  Google Scholar 

  • Rowan MG, Jackson MPA, Trudgill BD (1999) Salt-Related fault families and fault welds in the Northern Gulf of Mexico. AAPG Bull 83:1454–1484

    Google Scholar 

  • Rowan MG, Peel FJ, Vendeville BC (2004) Gravity-driven Fold Belts on passive Margins. In: McClay (eds). Thrust tectonics and hydrocarbon systems. AAPG Memoir vol 82, pp 157–182

  • Ruiz M (2007) Caracterització estructural i sismotectònica de la litosfera en el Domini Pirenaico-Cantàbric a partir de mètodes de sísmica activa i passiva. PhD thesis, Univ. Barcelona, Barcelona, Spain

  • Salas R, Guimerà J, Mas R, Martín-Closas C, Meléndez A, Alonso Á (2001) Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain). In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and PAssive Margins. Mémories du Muséum National de l’Historie Naturelle 186:145–185

  • Schröder B (1987) Inversion tectonics along the western margin of the Bohemian Massif. Tectonophysics 137:93–100

    Article  Google Scholar 

  • Sepehr M, Cosgrove J, Moieni M (2006) The impact of cover rock rheology on the style of folding in the Zagros fold-thrust belt. Tectonophysics 429:265–281. doi:10.1016/j.tecto.2006.05.021

    Article  Google Scholar 

  • Sepher M, Cosgrove JW (2005) The role of the Kazerun fault zone in the formation and deformation of the Zagros fold-thrust belt. Iran. Tectonics 28:TC5005

    Google Scholar 

  • Serrano A, Martínez del Olmo W (2004) Estructuras diapíricas de la zona meridional de la Cuenca Vasco-Cantábrica. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 334–338

    Google Scholar 

  • Serrano A, Hernáiz PP, Magalón J, Rodríguez-Cañas C (1994) Tectónica distensiva y halocinesis en el margen SO de la cuenca Vasco-Cantábrica. Geogaceta 15:131–134

    Google Scholar 

  • Soto R, Casas AM, Storti F, Faccenna C (2002) Role of lateral thickness variations on the development of oblique structures at the Western end of the South Pyrenean Central Unit. Tectonophysics 35:215–235

    Article  Google Scholar 

  • Spratt DA, Dixon JM, Beattie ET (2004) Changes in structural style controlled by lithofacies contrast across transverse carbonate bank margins—Canadian Rocky Mountains and scaled physical models. In: McClay KR (ed) Thrust tectonic and hydrocarbon systems: AAPG Memoir vol 82, pp 259–275

  • Steward SA, Argent JD (2000) Relationship between polarity of extensional fault arrays and presence of detachments. J Struct Geol 22:693–711

    Article  Google Scholar 

  • Steward SA, Ruffell AH, Harvey MJ (1997) Relationship between basement-linked and gravity-driven faults systems in the UKCS salt basins. Mar Pet Geol 14:581–604

    Article  Google Scholar 

  • Tavani S (2012) Plate kinematics in the Cantabrian domain of the Pyrenean orogen. Solid Earth 3:265–292

    Article  Google Scholar 

  • Tavani S, Muñoz JA (2012) Mesozoic rifting in the Basque–Cantabrian Basin (Spain): inherited faults, transversal structures and stress perturbation. Terranova 24:70–76. doi:10.1111/j.1365-3121.2011.01040.x

    Google Scholar 

  • Tavani S, Quintà A, Granado P (2011) Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): the Ubierna fault system. Tectonophysics 509:238–253. doi:10.1016/j.tecto.2011.06.013

    Article  Google Scholar 

  • Tavani S, Carola E, Granado P, Quintà A, Muñoz JA (2013) Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque–Cantabrian Basin (Spain). Tectonics. doi:10.1002/tect.20019

    Google Scholar 

  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay–Pyrenees. Tectonics. doi:10.1002/2014TC003529

    Google Scholar 

  • Veen V (1965) The tectonic and strarigraphic history of the Cardaño area, Cantabrian Mountains, northern Spain. Leisde Geol Meded 35:45–104

    Google Scholar 

  • Vendeville BC, Jackson MPA (1992) The rise of diapirs during thin-skinned extension. Mar Pet Geol 9:331–353

    Article  Google Scholar 

  • Vergés J, García-Senz J (2001) Mesozoic evolution and Cainozoic inversión of the Pyrenean Rift, in Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. In: Ziegler PA (ed) Mém Mus Natl Hist Nat 186:187–212

  • Vergés J, Fernàndez M, Martínez A (2002) The Pyrenean origen: pre-, syn-, and post-collisional evolution. In: Rosenbaum G, Lister GS, (eds) Reconstruction of the evolution of the Alpine–Himalayan orogen. J Virtual Explor 8:57–76

  • Vidal-Royo O, Koyi HA, Muñoz JA (2009) Formation of orogen-perpendicular thrusts due to mechanical contrasts in the basal décollement in the Central External Sierras (Southern Pyrenees, Spain). J Struct Geol 31:523–539

    Article  Google Scholar 

  • Wagner RH, Winkler Prins CF, Riding RE, Wagner-Gentis CHT (1971) Lithostratigraphic units of the lower part of the Carboniferous in northern León, Spain. Trabajos de Geología 4:603–663

    Google Scholar 

  • Whithjack MO, Callaway S (2000) Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the Cove Sequence. Am Assoc Pet Geol Bull 84:627–651

    Google Scholar 

  • Ziegler PA (ed) (1987) Compressional intra-plate deformation in the Alpine Foreland. Tectonophysics 137:1–5

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out under the financial support of INTECTOSAL (CGL2010-21968-C02-01/BTE) and CIUDEN (FBG305657) projects and also the “Grup de Recerca de Geodinàmica i Anàlisi de Conques” (2009SGR-1198). Stefano Tavani, Mark Rowan and Andrés Pérez are thanked for fruitful discussions. The Instituto Geológico y Minero de España (I.G.M.E.) is thanked for providing seismic sections. We also thank Seismic Micro-Technology and Midland Valley which generously provided Kingdom Suite and Move software. Finally, we want to thank Wolf-Christian Dullo, Claudio Rosenberg and anonymous reviewer for the comments that helped to improve the former manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloi Carola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carola, E., Muñoz, J.A. & Roca, E. The transition from thick-skinned to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: the Burgalesa Platform and surroundings. Int J Earth Sci (Geol Rundsch) 104, 2215–2239 (2015). https://doi.org/10.1007/s00531-015-1177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1177-z

Keywords

Navigation