Advertisement

International Journal of Earth Sciences

, Volume 105, Issue 6, pp 1761–1778 | Cite as

Shaping the Rwenzoris: balancing uplift, erosion, and glaciation

  • Georg KaufmannEmail author
  • Matthias Hinderer
  • Douchko Romanov
Original Paper

Abstract

The Rwenzori Mountains in Africa represent an extremely uplifted basement fault block at the eastern edge of the western branch of the East African Rift system, a large-scale rift system controlled by extensional stresses. The rugged alpine topography reaches an altitude of up to 5109 m, and the highest parts are ice-covered. Glacial landforms and moraines proof repeated more extensive glaciations during the last glacial cycles. In order to elucidate magnitudes and the varying role of erosional processes in shaping the relief of the Rwenzori Mountains over the past 2 mill. years, we performed numerical simulations with the landscape evolution programme ULTIMA THULE. It is controlled by a climate driver with temperature as a master variable as well as changing precipitation and evapotranspiration over time. The morphological processes considered are fluvial erosion, hillslope diffusion, and glacial abrasion, and the latter controlled by the simulated glaciation of the landscape. We provide three sets of model runs: the first one starting from the present-day topography and running for approx. 800 ka, the second one extending the modelling period to 2 Ma, and the third one starting from a peneplain and evolving for 2 Ma. Our results provide constraints on the temperature history of the Rwenzori Mountains, the interplay of morphological degradation and tectonic uplift, and a time frame for the formation of the mountain chain from a peneplain to the present relief. The modelled landscape evolves from a peneplain 2 Ma ago to a Rwenzori-type mountain range, when the fairly strong average rock uplift of 1–2 mm year−1 is compensated by a strong fluvial erosion component. The rock uplift rate is needed to obtain elevations above the equilibrium line altitude around 500 ka BP and results in surface uplift over time. Around that time, a periodic ice cap appears in the models, and glacial abrasion then limits the height of the Rwenzori Mountains to its present elevation.

Keywords

Rwenzori Mountains Geomorphology Modelling 

Notes

Acknowledgments

We thank Friederike Bauer and another anonymous reviewer for their thorough reviews which helped improving the manuscript. The authors acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) under the Research Group RIFTLINK (FOR 703, Rift Dynamics, Uplift and Climate Change in Equatorial Africa: Interdisciplinary Research linking Asthenosphere, Lithosphere, Biosphere and Atmosphere). Within the RIFTLINK framework, DR has been funded by the DFG under research Grant KA1723/7, MH under research Grant HI643/7-2. Figures were prepared using GMT software (Wessel and Smith 1998).

References

  1. Barker PA, Hurrell ER, Leng MJ, Wolff C, Cocquyt C, Sloane HJ, Verschuren D (2011) Seasonality in equatorial climate over the past 25 ky revealed by oxygen isotope records from Mount Kilimanjaro. Geology 39(12):1111–1114CrossRefGoogle Scholar
  2. Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B (2010) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99(7):1575–1597CrossRefGoogle Scholar
  3. Bauer FU, Karl M, Glasmacher UA, Nagudi B, Mroszewski L (2012) The Rwenzori Mountains of western Uganda—aspects on the evolution of their remarkable morphology within the Albertine Rift. J Afr Earth Sci 73–74:44–56CrossRefGoogle Scholar
  4. Bauer FU, Glasmacher UA, Ring U, Karl M, Schumann A, Nagudi B (2013) Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology. Tectonophysics 599:8–28. doi: 10.1016/j.tecto.2013.03.032 CrossRefGoogle Scholar
  5. Beaumont C, Fullsack P, Hamilton J (1992) Erosional control of active compressional orogens. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, New York, pp 1–18CrossRefGoogle Scholar
  6. Beuning KRM, Talbot MR, Kelts K (1997) A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 136:259–279CrossRefGoogle Scholar
  7. Bonnefille R, Chalie F (2000) Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Glob Planet Change 26:25–50CrossRefGoogle Scholar
  8. Braun J, Sambridge M (1997) Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretisation. Basin Res 9:27–52CrossRefGoogle Scholar
  9. Braun J, Willet SD (2013) A very efficient o(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 180181:170179Google Scholar
  10. Braun J, Zwartz D, Tomkin JH (1999) A new surface processes model combining glacial and fluvial erosion. Ann Glaciol 28:282–290CrossRefGoogle Scholar
  11. Burke K, Gunnell Y (2008) The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years, vol 201. Geological Society of America MemoirGoogle Scholar
  12. Ebinger CJ (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903CrossRefGoogle Scholar
  13. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:788791CrossRefGoogle Scholar
  14. Egholm DL, Nielsen SB, Pedersen VK, Lesemann J-E (2009) Glacial effects limiting mountain height. Nature 460:884–888CrossRefGoogle Scholar
  15. EPICA (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628Google Scholar
  16. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183 CrossRefGoogle Scholar
  17. Felton AA, Russell JM, Cohen Andrew S, Baker Mark E, Chesley John T, Lezzar Kiram E, McGlue Michael M, Pigati Jeffrey S, Jay Quade, Curt Stager J, Jacques Tiercelin Jean (2007) Paleolimnological evidence for the onset and termination of glacial aridity from lake Tanganyika, Tropical East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 252:405–423CrossRefGoogle Scholar
  18. Foley S, Link K, Tiberindwa JV, Barifajio E (2012) Patterns and origin of igneous activity around the Tanzanian craton. J Afr Earth Sci 62:1–18CrossRefGoogle Scholar
  19. Gasse F (2000) Hydrological changes in the African tropics since the last glacial maximum. Quat Sci Rev 19:189–211CrossRefGoogle Scholar
  20. Hallet B (1979) A theoretical model of glacial abrasion. J Glaciol 17:209–222Google Scholar
  21. Herman F, Braun J (2008) Evolution of the glacial landscape of the Southern Alps of New Zealand: insights from a glacial erosion model. J Geophys Res 113:F02009. doi: 10.1029/2007JF000807 Google Scholar
  22. Hutter K (1983) Theoretical glaciology. Riedel, DortrechtCrossRefGoogle Scholar
  23. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org
  24. Kapelle M (2004) Encyclopedia of forest sciences, chapter tropical montane forests. Elsevier, Oxford, pp 1782–1792. doi: 10.1016/B0-12-145160-7/00175-7
  25. Kaser G (2001) Glacier-climate interaction at low latitudes. J Glaciol 47(157):195–204CrossRefGoogle Scholar
  26. Kaspar F, Prmmel K, Cubasch U (2010) Impacts of tectonic and orbital forcing on East African climate: a comparison based on global climate model simulations. Int J Earth Sci 99(7):1677–1686CrossRefGoogle Scholar
  27. Kaufmann G (2010) ULTIMA THULE: a numerical landscape evolution model. User guide version 1.0Google Scholar
  28. Kaufmann Georg, Romanov Douchko (2012) Landscape evolution and glaciation of the rwenzori mountains: insights from numerical modelling. Geomorphology 138:263–275CrossRefGoogle Scholar
  29. Kessler M, Anderson R, Stock G (2006) Modeling topographic and climatic control of east–west asymmetry in Sierra Nevada glacier length during the last glacial maximum. J Geophys Res 111:F02002. doi: 10.1029/2005JF000365 CrossRefGoogle Scholar
  30. Koehn D, Lindenfeld M, Rümpker G, Aanyu K, Haines S, Passchier CW, Sachau T (2010) Active transsection faults in rift transfer zones: evidence for complex stress fields and implications for crustal fragmentation processes in the western branch of the East African Rift. Int J Earth Sci 99(7):1633–1642CrossRefGoogle Scholar
  31. Kooi H, Beaumont C (1994) Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction. J Geophys Res 99(B6):12191–12209CrossRefGoogle Scholar
  32. Lindenfeld M, Rümpker G, Batte A, Schumann A (2012) Seismicity from February 2006 to September 2007 at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms. Solid Earth 3:1–14CrossRefGoogle Scholar
  33. Link K, Koehn D, Barth MG, Tiberindwa JV, Barifaijo E, Aanyu K, Foley SF (2010) Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. Int J Earth Sci 99(7):1559–1573CrossRefGoogle Scholar
  34. Lisiecki LE, Raymo ME (2005) A pliocene–pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20:PA1003. doi: 10.1029/2004PA001071 Google Scholar
  35. Morley CK (1999) Tectonic evolution of the East African Rift System and the modifying influence of magmatism: a review. Acta Vulcanol 11(1):119Google Scholar
  36. Osmaston HA (1989) Glaciers, glaciations, and equilibrium line altitudes on the Rwenzori. Quat Environ Res East Afr Mt 1:31–104Google Scholar
  37. Osmaston HA, Harrison SP (2005) The late quaternary glaciation of Africa: a regional synthesis. Quat Int 138–139:32–54CrossRefGoogle Scholar
  38. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  39. Pickford M (1990) Uplift of the roof of Africa and its bearing on the evolution of mankind. Hum Evol 5(1):1–20CrossRefGoogle Scholar
  40. Pickford M, Senut B, Hadoto D (1993) Geology and palaeontology of the Albertine Rift Valley, Uganda-Zaire, vol 24. Publication Occasionelle, Centre International pour la Formation et les Echanges Geologiques, Orleans Cedex 2Google Scholar
  41. Prömmel K, Cubasch U, Kaspar F (2013) A regional climate model study of the impact of tectonic and orbital forcing on African precipitation and vegetation. Palaeogeogr Palaeoclimatol Palaeoecol 369:154–162CrossRefGoogle Scholar
  42. Ring U (1993) Aspects of the kinematic history and mechanisms of superposition of Proterozoic mobile belt of eastern Central Africa (northern Malawi and southern Tanzania). Precambrian Res 62:207–226CrossRefGoogle Scholar
  43. Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics 27. doi: 10.1029/2007TC002176
  44. Ritsema J, Ni S, Helmberger DV, Crotwell HP (1999) Evidence for strong shear velocity reduction and velocity gradients in the lower mantle beneath Africa. Geophys Res Lett 25:4245–4248CrossRefGoogle Scholar
  45. Roller S, Hornung J, Hinderer M, Ssemmanda I (2010) Middle miocene to pleistocene sedimentary record of rift evolution in the southern Albert Rift (Uganda). Int J Earth Sci 99(7):1643–1661CrossRefGoogle Scholar
  46. Roller S, Wittmann H, Kastowski M, Hinderer M (2012) Erosion of the Rwenzori Mountains, East African Rift, from in situ-produced cosmogenic 10Be. J Geophys Res 117:F03003. doi: 10.1029/2011JF002117 CrossRefGoogle Scholar
  47. Sachau T, Koehn D (2010) Faulting of the lithosphere during extension and related rift-flank uplift: a numerical study. Int J Earth Sci 99(7):1619–1632CrossRefGoogle Scholar
  48. Sachau T, Koehn D, Passchier C (2013) Mountain-building under extension. Am J Sci 313:326–344. doi: 10.2475/04.2013.03 CrossRefGoogle Scholar
  49. Scholz CA, Johnson TC, Cohend AS, Kinge JW, Peck JA, Overpeck JT, Talbot MR, Brown ET, Kalindekafeh L, Philip YOA, Robert PL, Timothy MS, Isla SC, Clifford WH, Steven LF, Lanny RM, Kristina RB, Jeanette G, James P (2007) East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. PNAS 104(42):16416–16421Google Scholar
  50. Shanahan T, Zreda M (2000) Chronology of quaternary glaciations in East Africa. Earth Planet Sci Lett 177:23–42CrossRefGoogle Scholar
  51. Spotila JA, Busher JT, Meigs AJ, Reiners PW (2004) Longterm glacial erosion of active mountain belts: example of the chugach-St. Elias Range, Alaska. Geology 32:501–504CrossRefGoogle Scholar
  52. Taylor RG, Mileham L, Tindimugaya C, Majugu A, Muwanga A, Nakileza B (2006) Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys Res Lett 33. doi: 10.1026/2006GL025962
  53. Tomkin J (2003) Feedbacks and the oscillation of ice masses. J Geophys Res 108(B10). doi: 10.1029/2002JB002087
  54. Tomkin J (2007) Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. J Geophys Res 112:F02015. doi: 10.1029/2005JF000332 CrossRefGoogle Scholar
  55. Tomkin JH, Braun J (2002) The influence of alpine glaciation on the relief of tectonically active mountain belts. Am J Sci 302:169–190CrossRefGoogle Scholar
  56. Tomkin JH (2009) Numerically simulating alpine landscapes: the geomorphologic consequences of incorporating glacial erosion in surface process models. Geomorphology 103:180–188CrossRefGoogle Scholar
  57. Trauth MH, Deino AL, Bergner AGN, Strecker MR (2003) East African climate change and orbital forcing during the last 175 kyr BP. Earth Planet Sci Lett 206:297–313CrossRefGoogle Scholar
  58. Tucker GE, Slingerland RL (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res 99:12229–12243CrossRefGoogle Scholar
  59. Turcotte DL, Schubert G (1982) Geodynamics. Wiley, New YorkGoogle Scholar
  60. Van Damme D, Pickford M (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift Valley (Uganda-Congo) and their bearing on the origin and evolution of the Tanganyikan thalassoid malacofauna. Hydrobiologia 498:183Google Scholar
  61. van der Beek P, Bishop P (2003) Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models. J Geophys Res 108:2309. doi: 10.1029/2002JB002125 Google Scholar
  62. Wallner H, Schmeling H (2010) Rift induced delamination of mantle lithosphere and crustal uplift: a new mechanism for explaining Rwenzori Mountains extreme elevation? Int J Earth Sci 99(7):1511–1524CrossRefGoogle Scholar
  63. Wallner H, Schmeling H (2011) Sensitivity analysis of rift induced delamination with application to Rwenzori Mountains. Geophys J Int 187:1135–1145CrossRefGoogle Scholar
  64. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS 79:579CrossRefGoogle Scholar
  65. Wölbern I, Rümpker G, Schumann A, Muwanga A (2010) Crustal thinning beneath the Rwenzori region, Albertine Rift, Uganda, from receiver-function analysis. Int J Earth Sci 99(7):1545–1557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Georg Kaufmann
    • 1
    Email author
  • Matthias Hinderer
    • 2
  • Douchko Romanov
    • 1
  1. 1.Institut für Geologische WissenschaftenFreie Universität BerlinBerlinGermany
  2. 2.Institut für Angewandte GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations