Advertisement

International Journal of Earth Sciences

, Volume 104, Issue 5, pp 1439–1457 | Cite as

The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile

  • Gauvain WiemerEmail author
  • Jasper Moernaut
  • Nina Stark
  • Philipp Kempf
  • Marc De Batist
  • Mario Pino
  • Roberto Urrutia
  • Bruno Ladrón de Guevara
  • Michael Strasser
  • Achim Kopf
Original Paper

Abstract

Subaqueous slope failure mechanisms are still poorly understood partly because they are difficult to study due to the remote location of submarine landslides. Landslides in lakes are smaller in size and more readily accessible and therefore represent a good alternative to their marine counterparts. Lake Villarrica, located in South-Central Chile, experienced significant slope failure and serves here as an exemplary study area for subaqueous landslide initiation mechanisms in tectonically active settings. Coring and CPTU testing were undertaken with the MARUM free-fall CPTU deployed adjacent to the coring sites where all lithological units involved in the slope failure were sampled. Using geotechnical methods such as pseudo-static factor of safety analysis and cyclic triaxial testing, three types of soils (i.e., diatomaceous ooze, volcanic ash, and quick clay) were analyzed for their role in slope failure, and earthquake shaking was identified as the primary trigger mechanism. The investigated landslide consisted of two distinct phases. During the first phase, slope failure was initiated above a tephra layer. In the second phase, retrogression led to the shoreward extension of the slide scarp along a second failure plane located in a stratigraphically deeper, extremely sensitive lithology (i.e., quick clay). Results show that liquefaction of buried tephra layers was unlikely, but such layers might still have contributed to a reduction in shear strength along the contact area with the neighboring sediment. Furthermore, cyclic shaking-induced pore pressure in diatomaceous ooze may be similar to that in granular soils. We generally infer that failure mechanisms observed in this study are equally important for landslide initiation in submarine settings as diatomaceous ooze intercalated with volcanic ash may be abundantly present along active continental margins.

Keywords

Landslide Earthquake shaking Tephra Quick clay Diatomaceous ooze CPT Cyclic loading 

Notes

Acknowledgments

Matthias Lange is thanked for technical assistance with the static and dynamic shear apparatus at MARUM Marine Geotechnics laboratory. We are grateful to Deutsche Forschungsgemeinschaft (Bonn, Germany) for funding MARUM–Center for Marine Environmental Sciences. We thank Alejandro Peña, Robert Brümmer, and Koen De Rycker for their logistic and technical support of the geophysical surveys. This work was financially supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Swiss National Science Foundation (grant 133481).

References

  1. Andresen A, Berre T, Kleven A, Lunne T (1979) Procedures used to obtain soil parameters for foundation engineering in the North Sea. Marine Georesources Geotechnol 3(3):201–266CrossRefGoogle Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca–South America Euler vector. Earth Planet Sci Letters 171(3):329–334. doi: 10.1016/S0012-821X(99)00173-9 CrossRefGoogle Scholar
  3. ASTM Standard (2000) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PAGoogle Scholar
  4. Bertrand S (2005) Sédimentation lacustre postérieure au dernier maximum glaciaire dans les lacs Icalma et Puyehue (Chili meridional): réconstitution de la variabilité climatique et des évènements sismo-tectoniques. Université de Liège, LiègeGoogle Scholar
  5. Blum P (1997) Physical Properties Handbook: A guide to the shopboard measurement of physical properties of dee-sea cores. ODP Technical Notes 26Google Scholar
  6. Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the South-Chilean active margin: a Pleistocene-Holocene record of climate and tectonics. Earth Planet Sci Letters 268(3–4):526–539CrossRefGoogle Scholar
  7. Bolton MD (1986) The strength and dilatancy of sand. Geotechnique 36(1):65–78CrossRefGoogle Scholar
  8. British-Standard-Institute (1977) Methods of testing soil for civil engineering purposes, BS 1377. BSI, London, vol BS1377. BSI, LondonGoogle Scholar
  9. Busch WH, Keller GH (1981) The physical properties of Peru–Chile continental margin sediments; the influence of coastal upwelling on sediment properties. J Sediment Res 51(3):705–719Google Scholar
  10. Chaney RC, Richardson GN (1988) Measurement of residual/remolded vane shear strength of marine sediments. Vane shear strength testing in soils. In Richards AF (ed), Field and laboratory study, ASTM STP 1014. ASTM, PhiladelphiaGoogle Scholar
  11. Chapron E, Ariztegui D, Mulsow S, Villarosa G, Pino M, Outes V, Juvignié E, Crivelli E (2006) Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quat Int 158(1):58–71. doi: 10.1016/j.quaint.2006.05.017 CrossRefGoogle Scholar
  12. Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437(7057):404–407CrossRefGoogle Scholar
  13. Day RW (1995) Engineering properties of diatomaceous fill. J Geotech Eng 121(12):908–910CrossRefGoogle Scholar
  14. Dayal U, Allen JH (1975) The effect of penetration rate on the strength of remolded clay and sand samples. Can Geotech J 12(3):336–348. doi: 10.1139/t75-038 CrossRefGoogle Scholar
  15. Deutsches Institut für Normung (1996) Baugrund, Untersuchung von Bodenproben—Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. DIN-Norm 1826. Beuth, BerlinGoogle Scholar
  16. Deutsches Institut für Normung (2002) Baugrund, Untersuchung von Bodenproben—Bestimmung der Scherfestigkeit. DIN-Norm 18137-3. Beuth, BerlinGoogle Scholar
  17. Deutsches Institut für Normung (2012) Soil—investigation and testing—oedometer consolidation test. DIN 18135:2012-04. Beuth, BerlinGoogle Scholar
  18. Dugan B, Germaine JT (2008) Near-seafloor overpressure in the deepwater Mississippi Canyon, northern Gulf of Mexico. Geophys Res Lett 35(2):L02304. doi: 10.1029/2007gl03227
  19. Duke CM, Leeds DJ (1963) Response of soils, foundations, and earth structures to the Chilean earthquakes of 1960. Bull Seismol Soc Am 53:309–357Google Scholar
  20. Echegaray J, Moreno H, López-Escobar L (1994) El deposito de pómez Pliniana del grupo volcanic Mocho-Choshuenco, Andes del sur (40°S), Chile. Actas 7th Chilean Geological Congress. ConcepciónGoogle Scholar
  21. Erguvanil S (1980) Effect of anisotropic consolidation on liquefaction. In: Proceedings of the world conference on earthquake engineering, p 163Google Scholar
  22. Fetter C (2001) Applied hydrogeology, vol 3. Prentice Hall, Upper Saddle RiverGoogle Scholar
  23. Galandarzadeh A, Ahmadi A (2012) Effects of anisotropic consolidation and stress reversal on the liquefaction resistance of sands and silty sands. Geotech Eng J SEAGS AGSSEA 43(2):33–39Google Scholar
  24. Garga V, McKay L (1984) Cyclic triaxial strength of mine tailings. J Geotech Eng 110(8):1091–1105. doi: 10.1061/(ASCE)0733-9410(1984)110:8(1091 CrossRefGoogle Scholar
  25. Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37(19):L19604. doi: 10.1029/2010gl044629 CrossRefGoogle Scholar
  26. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59CrossRefGoogle Scholar
  27. Handin J (1969) On the Coulomb–Mohr failure criterion. J Geophys Res 74(22):5343–5348. doi: 10.1029/JB074i022p05343 CrossRefGoogle Scholar
  28. Hansbo S (1957) A new approach to the determination of the shear strength of clay by the fall-cone test. Proc R Swed Geotech Inst, vol 14. StockholmGoogle Scholar
  29. Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11(5):Q05S23. doi: 10.1029/2009gc002844
  30. Heirman K (2011) ‘A wind of change’: changes in position and intensity of the southern hemisphere westerlies during oxygen isotope stages 3, 2 and 1. Ghent University, GhentGoogle Scholar
  31. Hynes-Griffin ME, Franklin AG (1984) Rationalizing the seismic coefficient method. Miscellaneous Paper GL-84-13, US Army Corps of Engineers, Vicksburg, MSGoogle Scholar
  32. Ikari MJ, Kopf AJ (2011) Cohesive strength of clay-rich sediment. Geophys Res Lett 38:5. doi: 10.1029/2011GL047918 CrossRefGoogle Scholar
  33. Karlsson R, Viberg L (1967) Ratio of c/p in relation to liquid limit and Plasticity Index, with special reference to Swedish clays. In: Proceedings, conference on shear strength properties of natural soils and rocks, vol 1. OsloGoogle Scholar
  34. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New JerseyGoogle Scholar
  35. Kreiter S, Moerz T, Strasser M, Lange M, Schunn W, Schlue BF, Otto D, Kopf A (2010) Advanced dynamic soil testing—introducing the New Marum dynamic triaxial testing device. In: Mosher DC, Shipp C, Moscardelli L et al (eds) Submarine mass movements and their consequences. Advances in natural and technological hazard research. Springer, Dordrecht, pp 31–42Google Scholar
  36. Kremer K, Simpson G, Girardclos S (2012) Giant Lake Geneva tsunami in AD 563. Nature Geosci 5(11):756–757. http://www.nature.com/ngeo/journal/v5/n11/abs/ngeo1618.html#supplementary-information CrossRefGoogle Scholar
  37. Laugenie C (1982) La région des lacs, Chili méridional. Université de Bordeaux III, FranceGoogle Scholar
  38. Lazo Hinrichs RG (2008) Estudio de Los Danos de los Terremotos del 21 y 22 de Mayo de 1960. Universidad de Chile, Facultad de Ciencias Fisicas y Matematicas, Departamento de Ingenieria Civil, Santiago de ChileGoogle Scholar
  39. Lee H, Baraza J (1999) Geotechnical characteristics and slope stability in the Gulf of Cadiz. Mar Geol 155(1–2):173–190CrossRefGoogle Scholar
  40. Leroueil S, Vaunat J, Picarelli L, Locat J, Lee Homa J, Faure R (1996) Geotechnical characterization of slope movements. In: Proceeding of international symposium on landslides, Trondheim, pp 53–74Google Scholar
  41. Locat J, Tanaka H (2001) A new class of soils: fossilifereous soils? Proceedings of the 15th international conference on soil mechanics and geotechnical engineering, vol 3. IstanbulGoogle Scholar
  42. Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain-size analyser for use with sediments. Sedimentology 41:353–361CrossRefGoogle Scholar
  43. Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378. doi: 10.1785/gssrl.75.3.368 CrossRefGoogle Scholar
  44. Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Spon Press, LondonGoogle Scholar
  45. McCulloch R, Bentley MJ, Purves RS, Hulton NR, Sugden DE, Clapperton CM (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Q Sci 15(4):409–417CrossRefGoogle Scholar
  46. Medvedev SV (1977) Seismic intensity scale MSK-76. Publ Inst Geophys Pol Acad Sc 117:95–102Google Scholar
  47. Meruane Naranjo CB (2005) El Efecto del Viento Puelche sobre la Hidrodinamica y Calidad de Aguas del Lago Villarrica. Santiago de ChileGoogle Scholar
  48. Moernaut J, De Batist M (2011) Frontal emplacement and mobility of sublacustrine landslides: results from morphometric and seismostratigraphic analysis. Mar Geol 285(1–4):29–45. doi: 10.1016/j.margeo.2011.05.001 CrossRefGoogle Scholar
  49. Moernaut J, De Batist M, Charlet F, Heirman K, Chapron E, Pino M, Brummer R, Urrutia R (2007) Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sediment Geol 195(3–4):239–256CrossRefGoogle Scholar
  50. Moernaut J, De Batist M, Heirman K, Van Daele M, Pino M, Brümmer R, Urrutia R (2009) Fluidization of buried mass-wasting deposits in lake sediments and its relevance for paleoseismology: results from a reflection seismic study of lakes Villarrica and Calafquén (South-Central Chile). Sediment Geol 213:121–135CrossRefGoogle Scholar
  51. Moernaut J, Daele MV, Heirman K, Fontijn K, Strasser M, Pino M, Urrutia R, De Batist M (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. J Geophys Res Solid Earth 119(3):1607–1633CrossRefGoogle Scholar
  52. Mohamad R, Dobry R (1986) Undrained monotonic and cyclic triaxial strength of sand. J Geotech Eng 112(10):941–958. doi: 10.1061/(ASCE)0733-9410(1986)112:10(941 CrossRefGoogle Scholar
  53. Möller B, Bergdahl U (1982) Estimation of the sensitivity of soft clays from static and weight sounding tests. In: Proceedings of the European symposium on penetration testing, pp 291–295Google Scholar
  54. Morgenstern NR, Price VE (1965) Analysis of stability of general slip surfaces. Geotechnique 15(1):79–93CrossRefGoogle Scholar
  55. Noorany I (1989) Classification of marine sediments. J Geotech Eng 115(1):23–37. doi: 10.1061/(ASCE)0733-9410(1989)115:1(23) CrossRefGoogle Scholar
  56. Rosenqvist IT (1953) Considerations on the sensitivity of Norwegian quick-clays. Geotechnique 3(5):195–200. doi: 10.1680/geot.1953.3.5.195 CrossRefGoogle Scholar
  57. Rosenqvist IT (1966) Norwegian research into the properties of quick clay—a review. Eng Geol 1(6):445–450. doi: 10.1016/0013-7952(66)90020-2 CrossRefGoogle Scholar
  58. Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan—based on the undrained dynamic-loading ring shear tests and computer simulation. Landslides 9(4):439-455. doi: 10.1007/s10346-012-0356-2
  59. Schmertmann JH (1953) The undisturbed consolidation behavior of clay. Proc ASCE 79:1–26Google Scholar
  60. Seed HB, Idriss IM (1971) Simplified procedure for evaluation soil liquefaction potential. Soil Mech Found Eng SM 9:1249–1273Google Scholar
  61. Silva Parejas C, Druitt TH, Robin C, Moreno H, Naranjo JA (2010) The Holocene Pucón eruption of Volcán Villarrica, Chile: deposit architecture and eruption chronology. Bull Volcanol 72(6):677–692. doi: 10.1007/s00445-010-0348-9 CrossRefGoogle Scholar
  62. Skempton AW (1954) The pore pressure coefficients A and B. Geotech 4(4):143–147CrossRefGoogle Scholar
  63. Stegmann S, Villinger H, Kopf A (2006) Design of a modular, marine free-fall cone penetrometer. Sea Technol 47(2):27Google Scholar
  64. Stegmann S, Strasser M, Kopf A, Anselmetti FS (2007) Geotechnical in situ characterisation of subaquatic slopes: the role of pore pressure transients versus frictional strength in landslide initiation. Geophys Res Lett 34:L07607Google Scholar
  65. Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Luceren as model for ocean margins. Mar Geol 240:77–97Google Scholar
  66. Suess E, von Huene R, Lee HJ, Kayen RE, McArthur WG (1990) Consolidation, triaxial shear-strength, and Index-Property characteristics of organic-rich sediment from the Peru continental margin: results from Leg 112. In: Proceedings of the ocean drilling program, scientific results, vol 112Google Scholar
  67. Sultan N, Cochonat P, Dennielou B, Bourillet JF, Savoye B, Colliat JL (2000) Surconsolidatoin apparente et pression osmotique dans un sédiment marin (Appearant overconsolidation and osmotic pressures in marine sediments). CRAcadSciParis, Sience de la Terre et des planètes 331:379–386Google Scholar
  68. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi J (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213(1–4):291–321CrossRefGoogle Scholar
  69. Syvitski JPM, Asprey KW, Clattenburg DA (1991) Principles, design and calibration of settling tubes. Principles, methods and application of particle size analysis. Cambridge University Press, New YorkCrossRefGoogle Scholar
  70. Tanaka M, Watabe Y, Tomita R, Kamei T (2012) Effects of diatom microfossils content on physical properties of clays. In: Proceedings of the twenty-second international offshore and polar engineering conference. ISOPE, Rhodes, Greece, 17–22 June 2012Google Scholar
  71. Ter-Stepanian G (2000) Quick clay landslides: their enigmatic features and mechanism. Bull Eng Geol Environ 59(1):47–57. doi: 10.1007/s100640000052 CrossRefGoogle Scholar
  72. Torrance JK (1983) Towards a general model of quick clay development. Sedimentology 30(4):547–555CrossRefGoogle Scholar
  73. Urciuoli G, Picarelli L, Leroueil S (2007) Local soil failure before general slope failure. Geotech Geol Eng 25(1):103–122. doi: 10.1007/s10706-006-0009-0 CrossRefGoogle Scholar
  74. USGS (2010) Pager—M 8.8—Offshore Maule, ChileGoogle Scholar
  75. Volpi V, Camerlenghi A, Hillenbrand CD, Rebesco M, Ivaldi R (2003) Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula. Basin Res 15(3):339–363. doi: 10.1046/j.1365-2117.2003.00210.x CrossRefGoogle Scholar
  76. Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile. J Volcanol Geotherm Res 134(4):303–337. doi: 10.1016/j.jvolgeores.2004.03.002 CrossRefGoogle Scholar
  77. Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder LF Jr., Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB II KHS (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng 127(10):817–833Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gauvain Wiemer
    • 1
    Email author
  • Jasper Moernaut
    • 2
    • 3
    • 5
  • Nina Stark
    • 4
  • Philipp Kempf
    • 3
  • Marc De Batist
    • 3
  • Mario Pino
    • 5
  • Roberto Urrutia
    • 6
  • Bruno Ladrón de Guevara
    • 7
  • Michael Strasser
    • 2
  • Achim Kopf
    • 1
  1. 1.MARUM, Centre for Marine Environmental SciencesBremenGermany
  2. 2.Geological InstituteETH ZürichZurichSwitzerland
  3. 3.Renard Centre of Marine GeologyGhent UniversityGhentBelgium
  4. 4.Department of Civil and Environmental EngineeringVirginia TechBlacksburgUSA
  5. 5.Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  6. 6.Centro EULAUniversidad de ConcepciónConcepciónChile
  7. 7.BENTOSSantiagoChile

Personalised recommendations