Abstract
The annually laminated oil shale from the Eocene maar lake at Messel (Federal State of Hessen, Germany) provides unique paleoenvironmental data for a time interval of ~640 ka during the Paleogene greenhouse phase. As a consequence of orbitally controlled changes in the vegetation in the vicinity of the lake, the lacustrine laminites can now be astronomically tuned. Dating is based on the short eccentricity amplitude modulations of the regional pollen rain and their correlation to the astronomical La2010a/La2010d solutions in combination with a revised 40Ar/39Ar age of a basalt fragment from a lapilli tuff section below the first lacustrine sediments. Depending on different newly suggested ages for the Fish Canyon sanidine used as monitor for neutron irradiation, the age for the eruption at Messel is between 48.27 ± 0.22 and 48.11 ± 0.22 Ma. This allows for the first time the exact correlation of a Paleogene lacustrine sequence to the marine record in Central Europe. The Messel oil shale becomes now slightly older than previously assumed and includes the Ypresian/Lutetian boundary that moves the base of the European Land Mammal Age Geiseltalian (MP 11) into the Lower Eocene. This opens a window for establishing an independent chronostratigraphic framework for Paleogene terrestrial records and their correlation to the marine realm. Furthermore, the study reveals that higher amounts of pollen from “wet” and thermophilous plants indicate less seasonal and more balanced precipitation and slightly higher temperatures during a well-expressed eccentricity minimum.
Similar content being viewed by others
References
Bains S, Norris RD, Corfield RM, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174
Barke J, Abels HA, Sangiorgi F, Greenwood DR, Sweet AR, Donders T, Reichart GJ, Lotter AF, Brinkhuis H (2011) Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39:427–430
Barrett PJ (1996) Antarctic paleoenvironment through Cenozoic times—a review. Terra Ant 3:103–119
Bijl P, Houben AJP, Schouten S, Bohaty SM, Sluijs A, Reichart G-J, Sinninghe-Damsté JS, Brinkhuijs H (2010) Transient Middle Eocene atmospheric CO2 and temperature variations. Science 330:819–821. doi:10.1126/science.1193654
Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020. doi:10.1130/G19800.1
Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem Geophy Geosy 11:Q0AA12. doi:10.1029/2010GC003203
Clemens SC (1999) An astronomical tuning strategy for Pliocene sections: implications for global-scale correlation and phase relationships. Phil Trans R Soc Lond A 357:1949–1973. doi:10.1098/rsta.1999.0409
Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204
Collinson ME (2002) The ecology of Cainozoic ferns. Rev Palaeobot Palyno 119:51–68
Collinson ME, Hooker JJ, Gröcke DR (2003) Cobham lignite bed and penecontemporaneous macrofloras of southern England: a record of vegetation and fire across Palaeocene-Eocene Thermal Maximum. Geol Soc Am Spec Pap 369:333–349
Collinson ME, Steart DC, Harrington GJ, Hooker JJ, Scott AC, Allen LO, Glasspool IJ, Gibbons SJ (2009) Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene-Eocene Thermal Maximum at Cobham, Southern England. Grana 48:38–66
Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci (Geol Rundsch) 94:640–656
Edgar KM, Wilson PA, Sexton PF, Gibbs SJ, Roberts AP, Norris RD (2010) New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr Palaeoclimatol 297:670–682. doi:10.1016/j.palaeo.2010.09.016
El Bay R, Jacoby W, Wallner H (2001) Milankovitch signals in Messel “Oilshales”. Kaupia 11:69–72
Felder M, Harms FJ (2004) Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour For Senckenbg 252:151–203
Felder M, Harms FJ, Liebig V (2001) Lithologische Beschreibung der Forschungsbohrungen Groß-Zimmern, Prinz von Hessen und Offenthal sowie zweier Lagerstättenbohrungen bei Eppertshausen (Sprendlinger Horst, Eozän, Messel-Formation, Süd-Hessen). Geol Jb Hessen 128:29–82
Fienga A, Manche H, Laskar J, Gastineau M (2008) INPOP06: a new numerical planetary ephemeris. Astron Astrophys 477:315–327. doi:10.1051/0004-6361:20066607
Fienga A, Laskar J, Morley T, Manche H, Kuchynka P, Le Poncin-Lafitte C, Budnik F, Gastineau M, Somenzi L (2009) INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron Astrophys 507:1675–1686. doi:10.1051/0004-6361/200911755
Franzen JL (2005) The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Ann Paleontol 91:329–335
Goth K (1990) Der Messeler Ölschiefer—ein Algenlaminit. Cour For Senckenbg 131:1–143
Grein M, Utescher T, Wilde V, Roth-Nebelsick A (2011) Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. N Jb Geol Paläont Abh 260:305–318
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1). http://www.palaeo-electronica.org/2001_1/past/issue1_01.htm
Harms FJ, Aderhold G, Hoffmann I, Nix T, Rosenberg F (1999) Erläuterungen zur Grube Messel bei Darmstadt, Südhessen. Schriftenreihe der Deutschen Geologischen Gesellschaft 8:181–222
Harms FJ, Nix T, Felder M (2003) Neue Darstellungen zur Geologie des Ölschiefer-Vorkommens Grube Messel. Nat Mus 133:140–148
Harrington GJ (2001) Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266–278
Harrington GJ, Jaramillo CA (2007) Paratropical floral extinction in the Late Palaeocene-Early Eocene. J Geol Soc Lond 164:323–332
Harrington GJ, Kemp SJ, Koch PL (2004) Palaeocene-Eocene paratropical floral change in North America: responses to climate change and plant immigration. J Geol Soc Lond 161:173–184
Harrington GJ, Clechenko ER, Kelly CD (2005) Palynology and organic-carbon isotope ratios across a terrestrial Paleocene/Eocene boundary section in the Williston Basin, North Dakota, USA. Palaeogeogr Palaeoclimatol 226:214–232
Hilgen F, Brinkhuis H, Zachariasse WJ (2006) Unit stratotypes for global stages: the Neogene perspective. Earth Sci Rev 74:113–125. doi:10.1016/j.earscirev.2005.09.003
Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci (Geol Rundsch) 96:979–1002
Hottenrott M (2002) Age determinations of palynological assemblages from Lower Tertiary of the Eisenberg Basin (Northern Palatinate, Germany). Acta Palaeontol Sinica 41:565–575
Huang J, Wang S, Wen X, Yang B (2008) Progress in studies of the climate of humid period and the impacts of changing precession in early-mid Holocene. Prog Nat Sci 18:1459–1464
Illies JH (1972) The Rhine Graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60
Irion G (1977) Der eozäne See von Messel. Natur Museum 107:213–218
Jacoby W, Wallner H, Smilde P (2000) Tektonik und Vulkanismus entlang der Messel-Störungszone auf dem Sprendlinger Horst: Geophysikalische Ergebnisse. Z Deut Geol Gesell 151:493–510
Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229
Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504
Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of 40K and the age of dating standards. Math Geol 34:457–474
Lanci L, Muttoni G, Erba E (2010) Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy. Earth Planet Sci Lett 292:231–237. doi:10.1016/j.epsl.2010.01.041
Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428:261–285. doi:10.1051/0004-6361:20041335
Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: a new orbital solution for the long-term motion of the Earth. Astron Astrophys 532(A89):1–15. doi:10.1051/0004-6361/201116836
Lenz OK (2005) Palynologie und Paläoökologie eines Küstenmoores aus dem Mittleren Eozän Mitteleuropas—Die Wulfersdorfer Flözgruppe aus dem Tagebau Helmstedt. Palaeontogr Abt B 271:1–157
Lenz OK, Wilde V, Riegel W (2007) Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev Palaeobot Palynol 145(217):242
Lenz OK, Wilde V, Riegel W, Harms FJ (2010) A 600 k.y. record of El Niño-Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38:627–630. doi:10.1130/G30889.1
Lenz OK, Wilde V, Riegel W (2011) Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: A 640 kyr record from the Messel oil shale (Germany). Int J Earth Sci (Geol Rundsch) 100:1851–1874. doi:10.1007/s00531-010-0609-z
Lorenz V (2000) Formation of maar-diatreme-volcanoes. International Maar Conference. Terra Nostra 2000(6):284–291
Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic time scale. Cambridge University Press, Cambridge, pp 409–440
Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–1087. doi:10.1038/nature03814
Loutre MF, Paillard D, Vimeux F, Cortijo E (2004) Does mean annual insolation have the potential to change the climate? Earth Planet Sci Lett 221:1–14
Matthess G (1956) Ein Beitrag zur Geologie des Ölschiefervorkommens von Messel bei Darmstadt. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines, Neue Folge 38:11–21
Merlis TM, Schneider T, Bordoni S, Eisenman I (2013) The tropical precipitation response to orbital precession. J Clim 26:2010–2021
Mertz DF, Renne PR (2005) A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. In: Harms FJ, Schaal S (eds) Current Geological and Paleontological research in the Messel Formation. Cour For Senckenbg 255:67–75
Molina E, Alegret L, Apellaniz E, Bernaola G, Caballero F, Dinarès-Turell J, Hardenbol J, Heilman-Clausen C, Larrasoaña JC, Luterbacher H, Monechi S, Ortiz S, Orue-Etxebarria X, Payros A, Pujalte V, Rodríguez-Tovar FJ, Tori F, Tosquella J, Uchman A (2011) The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain. Episodes 34:86–108
Mourik AA, Bijkerk JF, Cascella A, Hüsing SK, Hilgen FJ, Lourens LJ, Turco E (2010) Astronomical tuning of the La Vedova High Cliff section (Ancona, Italy)—implications of the Middle Miocene Climate Transition for Mediterranean sapropel formation. Earth Planet Sci Lett 297:249–261. doi:10.1016/j.epsl.2010.06.026
Nickel B (1996) Die mitteleozäne Mikroflora von Eckfeld bei Manderscheid/Eifel. Mainzer Naturwiss Arch Beiheft 18:1–121
Popescu SM, Suc JP, Loutre MF (2006) Early Pliocene vegetation changes forced by eccentricity-precession. Example from Southwestern Romania. Palaeogeogr Palaeoclimatol 238:340–348
Renne PR (2013) Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. In: Jourdan F, Mark DF, Verati C (eds) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Geol Soc Lond Spec Publ 378:21–31. doi:10.1144/SP378.17
Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152
Renne PR, Mundil R, Balco G, Min KW, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology. Geochim Cosmochim Ac 74:5349–5367
Renne PR, Balco G, Ludwig KR, Mundil R, Min KW et al (2011) Response to the comment by W.H. Schwarz, on “Joint determination of 40 K decay constants and 40Ar*/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology” by PR Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100
Rivera TA, Storey M, Zeeden C, Hilgen FJ, Kuiper K (2011) A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth Planet Sci Lett 311:420–426
Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930
Röhl U, Westerhold T, Monechi S, Thomas E, Zachos JC, Donner B (2005) The third and final Early Eocene Thermal Maximum: characteristics, timing and mechanisms of the “X” event. Geol Soc Am Abstr Prog 37(7):264
Schulz R, Harms FJ, Felder M (2002) Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z Angew Geol 48:9–17
Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:1006. doi:10.1029/2001TC900022,200
Sluijs A, Schouten S, Donders TH, Schoon PL, Röhl U, Reichart GJ, Sangiorgi F, Kim JH, Sinninghe Damsté JS, Brinkhuis H (2009) Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat Geosci 2:777–780. doi:10.1038/ngeo668
Tuenter E, Weber SL, Hilgen FJ, Lourens LJ, Ganopolski A (2005) Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Clim Dyn 24:279–295
Van Vugt N, Langereis CG, Hilgen FJ (2001) Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession. Palaeogeogr Palaeoclimatol 172:193–205
Varadi F, Runnegar B, Ghil M (2003) Successive refinements in long-term integrations of planetary orbits. Astrophys J 592:620–630. doi:10.1086/375560
Westerhold T, Röhl U, Raffi I, Fornaciari E, Monechi S, Reale V, Bowles J, Evans HF (2008) Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol 257:377–403. doi:10.1016/j.palaeo.2007.09.016
Westerhold T, Röhl U, Laskar J (2012) Time scale controversy: accurate orbital calibration of the early Paleogene. Geochem Geophy Geosyst 13:Q06015. doi:10.1029/2012GC004096
Wing SL, Currano ED (2013) Plant response to a global greenhouse event 56 million years ago. Am J Bot 100:1234–1254
Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–996
Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 to present. Science 292:686–693. doi:10.1126/science.1059412
Zachos JC, Mc Carren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249
Acknowledgments
Our research has been carried out as part of a project granted by the Deutsche Forschungsgemeinschaft (DFG-grant Wi 1676/6). Dr. M. Felder and Dr. F.-J. Harms helpfully provided additional information on the Messel drill core. Dr. P.R. Renne made an Excel workbook available for calculating of 40Ar/39Ar age uncertainties taking into account correlated uncertainties using Monte Carlo methods. Constructive comments by two anonymous reviewers substantially improved this paper.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lenz, O.K., Wilde, V., Mertz, D.F. et al. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int J Earth Sci (Geol Rundsch) 104, 873–889 (2015). https://doi.org/10.1007/s00531-014-1126-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-014-1126-2