International Journal of Earth Sciences

, Volume 104, Issue 3, pp 873–889 | Cite as

New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany)

  • Olaf K. LenzEmail author
  • Volker Wilde
  • Dieter F. Mertz
  • Walter Riegel
Original Paper


The annually laminated oil shale from the Eocene maar lake at Messel (Federal State of Hessen, Germany) provides unique paleoenvironmental data for a time interval of ~640 ka during the Paleogene greenhouse phase. As a consequence of orbitally controlled changes in the vegetation in the vicinity of the lake, the lacustrine laminites can now be astronomically tuned. Dating is based on the short eccentricity amplitude modulations of the regional pollen rain and their correlation to the astronomical La2010a/La2010d solutions in combination with a revised 40Ar/39Ar age of a basalt fragment from a lapilli tuff section below the first lacustrine sediments. Depending on different newly suggested ages for the Fish Canyon sanidine used as monitor for neutron irradiation, the age for the eruption at Messel is between 48.27 ± 0.22 and 48.11 ± 0.22 Ma. This allows for the first time the exact correlation of a Paleogene lacustrine sequence to the marine record in Central Europe. The Messel oil shale becomes now slightly older than previously assumed and includes the Ypresian/Lutetian boundary that moves the base of the European Land Mammal Age Geiseltalian (MP 11) into the Lower Eocene. This opens a window for establishing an independent chronostratigraphic framework for Paleogene terrestrial records and their correlation to the marine realm. Furthermore, the study reveals that higher amounts of pollen from “wet” and thermophilous plants indicate less seasonal and more balanced precipitation and slightly higher temperatures during a well-expressed eccentricity minimum.


Paleogene Maar lake Palynology 40Ar/39Ar age Astronomical tuning Milankovitch cycles 



Our research has been carried out as part of a project granted by the Deutsche Forschungsgemeinschaft (DFG-grant Wi 1676/6). Dr. M. Felder and Dr. F.-J. Harms helpfully provided additional information on the Messel drill core. Dr. P.R. Renne made an Excel workbook available for calculating of 40Ar/39Ar age uncertainties taking into account correlated uncertainties using Monte Carlo methods. Constructive comments by two anonymous reviewers substantially improved this paper.

Supplementary material

531_2014_1126_MOESM1_ESM.doc (210 kb)
Supplementary material 1 (DOC 209 kb)


  1. Bains S, Norris RD, Corfield RM, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174CrossRefGoogle Scholar
  2. Barke J, Abels HA, Sangiorgi F, Greenwood DR, Sweet AR, Donders T, Reichart GJ, Lotter AF, Brinkhuis H (2011) Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39:427–430CrossRefGoogle Scholar
  3. Barrett PJ (1996) Antarctic paleoenvironment through Cenozoic times—a review. Terra Ant 3:103–119Google Scholar
  4. Bijl P, Houben AJP, Schouten S, Bohaty SM, Sluijs A, Reichart G-J, Sinninghe-Damsté JS, Brinkhuijs H (2010) Transient Middle Eocene atmospheric CO2 and temperature variations. Science 330:819–821. doi: 10.1126/science.1193654 CrossRefGoogle Scholar
  5. Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020. doi: 10.1130/G19800.1 CrossRefGoogle Scholar
  6. Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem Geophy Geosy 11:Q0AA12. doi: 10.1029/2010GC003203 CrossRefGoogle Scholar
  7. Clemens SC (1999) An astronomical tuning strategy for Pliocene sections: implications for global-scale correlation and phase relationships. Phil Trans R Soc Lond A 357:1949–1973. doi: 10.1098/rsta.1999.0409 CrossRefGoogle Scholar
  8. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204Google Scholar
  9. Collinson ME (2002) The ecology of Cainozoic ferns. Rev Palaeobot Palyno 119:51–68CrossRefGoogle Scholar
  10. Collinson ME, Hooker JJ, Gröcke DR (2003) Cobham lignite bed and penecontemporaneous macrofloras of southern England: a record of vegetation and fire across Palaeocene-Eocene Thermal Maximum. Geol Soc Am Spec Pap 369:333–349Google Scholar
  11. Collinson ME, Steart DC, Harrington GJ, Hooker JJ, Scott AC, Allen LO, Glasspool IJ, Gibbons SJ (2009) Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene-Eocene Thermal Maximum at Cobham, Southern England. Grana 48:38–66CrossRefGoogle Scholar
  12. Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci (Geol Rundsch) 94:640–656CrossRefGoogle Scholar
  13. Edgar KM, Wilson PA, Sexton PF, Gibbs SJ, Roberts AP, Norris RD (2010) New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr Palaeoclimatol 297:670–682. doi: 10.1016/j.palaeo.2010.09.016 CrossRefGoogle Scholar
  14. El Bay R, Jacoby W, Wallner H (2001) Milankovitch signals in Messel “Oilshales”. Kaupia 11:69–72Google Scholar
  15. Felder M, Harms FJ (2004) Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour For Senckenbg 252:151–203Google Scholar
  16. Felder M, Harms FJ, Liebig V (2001) Lithologische Beschreibung der Forschungsbohrungen Groß-Zimmern, Prinz von Hessen und Offenthal sowie zweier Lagerstättenbohrungen bei Eppertshausen (Sprendlinger Horst, Eozän, Messel-Formation, Süd-Hessen). Geol Jb Hessen 128:29–82Google Scholar
  17. Fienga A, Manche H, Laskar J, Gastineau M (2008) INPOP06: a new numerical planetary ephemeris. Astron Astrophys 477:315–327. doi: 10.1051/0004-6361:20066607 CrossRefGoogle Scholar
  18. Fienga A, Laskar J, Morley T, Manche H, Kuchynka P, Le Poncin-Lafitte C, Budnik F, Gastineau M, Somenzi L (2009) INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron Astrophys 507:1675–1686. doi: 10.1051/0004-6361/200911755 CrossRefGoogle Scholar
  19. Franzen JL (2005) The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Ann Paleontol 91:329–335CrossRefGoogle Scholar
  20. Goth K (1990) Der Messeler Ölschiefer—ein Algenlaminit. Cour For Senckenbg 131:1–143Google Scholar
  21. Grein M, Utescher T, Wilde V, Roth-Nebelsick A (2011) Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. N Jb Geol Paläont Abh 260:305–318CrossRefGoogle Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1).
  23. Harms FJ, Aderhold G, Hoffmann I, Nix T, Rosenberg F (1999) Erläuterungen zur Grube Messel bei Darmstadt, Südhessen. Schriftenreihe der Deutschen Geologischen Gesellschaft 8:181–222Google Scholar
  24. Harms FJ, Nix T, Felder M (2003) Neue Darstellungen zur Geologie des Ölschiefer-Vorkommens Grube Messel. Nat Mus 133:140–148Google Scholar
  25. Harrington GJ (2001) Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266–278CrossRefGoogle Scholar
  26. Harrington GJ, Jaramillo CA (2007) Paratropical floral extinction in the Late Palaeocene-Early Eocene. J Geol Soc Lond 164:323–332CrossRefGoogle Scholar
  27. Harrington GJ, Kemp SJ, Koch PL (2004) Palaeocene-Eocene paratropical floral change in North America: responses to climate change and plant immigration. J Geol Soc Lond 161:173–184CrossRefGoogle Scholar
  28. Harrington GJ, Clechenko ER, Kelly CD (2005) Palynology and organic-carbon isotope ratios across a terrestrial Paleocene/Eocene boundary section in the Williston Basin, North Dakota, USA. Palaeogeogr Palaeoclimatol 226:214–232CrossRefGoogle Scholar
  29. Hilgen F, Brinkhuis H, Zachariasse WJ (2006) Unit stratotypes for global stages: the Neogene perspective. Earth Sci Rev 74:113–125. doi: 10.1016/j.earscirev.2005.09.003 Google Scholar
  30. Hinsken S, Ustaszewski K, Wetzel A (2007) Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci (Geol Rundsch) 96:979–1002CrossRefGoogle Scholar
  31. Hottenrott M (2002) Age determinations of palynological assemblages from Lower Tertiary of the Eisenberg Basin (Northern Palatinate, Germany). Acta Palaeontol Sinica 41:565–575Google Scholar
  32. Huang J, Wang S, Wen X, Yang B (2008) Progress in studies of the climate of humid period and the impacts of changing precession in early-mid Holocene. Prog Nat Sci 18:1459–1464CrossRefGoogle Scholar
  33. Illies JH (1972) The Rhine Graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60CrossRefGoogle Scholar
  34. Irion G (1977) Der eozäne See von Messel. Natur Museum 107:213–218Google Scholar
  35. Jacoby W, Wallner H, Smilde P (2000) Tektonik und Vulkanismus entlang der Messel-Störungszone auf dem Sprendlinger Horst: Geophysikalische Ergebnisse. Z Deut Geol Gesell 151:493–510Google Scholar
  36. Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229CrossRefGoogle Scholar
  37. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504CrossRefGoogle Scholar
  38. Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of 40K and the age of dating standards. Math Geol 34:457–474CrossRefGoogle Scholar
  39. Lanci L, Muttoni G, Erba E (2010) Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy. Earth Planet Sci Lett 292:231–237. doi: 10.1016/j.epsl.2010.01.041 CrossRefGoogle Scholar
  40. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428:261–285. doi: 10.1051/0004-6361:20041335 CrossRefGoogle Scholar
  41. Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: a new orbital solution for the long-term motion of the Earth. Astron Astrophys 532(A89):1–15. doi: 10.1051/0004-6361/201116836 Google Scholar
  42. Lenz OK (2005) Palynologie und Paläoökologie eines Küstenmoores aus dem Mittleren Eozän Mitteleuropas—Die Wulfersdorfer Flözgruppe aus dem Tagebau Helmstedt. Palaeontogr Abt B 271:1–157Google Scholar
  43. Lenz OK, Wilde V, Riegel W (2007) Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev Palaeobot Palynol 145(217):242Google Scholar
  44. Lenz OK, Wilde V, Riegel W, Harms FJ (2010) A 600 k.y. record of El Niño-Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38:627–630. doi: 10.1130/G30889.1 CrossRefGoogle Scholar
  45. Lenz OK, Wilde V, Riegel W (2011) Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: A 640 kyr record from the Messel oil shale (Germany). Int J Earth Sci (Geol Rundsch) 100:1851–1874. doi: 10.1007/s00531-010-0609-z
  46. Lorenz V (2000) Formation of maar-diatreme-volcanoes. International Maar Conference. Terra Nostra 2000(6):284–291Google Scholar
  47. Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic time scale. Cambridge University Press, Cambridge, pp 409–440Google Scholar
  48. Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–1087. doi: 10.1038/nature03814 CrossRefGoogle Scholar
  49. Loutre MF, Paillard D, Vimeux F, Cortijo E (2004) Does mean annual insolation have the potential to change the climate? Earth Planet Sci Lett 221:1–14CrossRefGoogle Scholar
  50. Matthess G (1956) Ein Beitrag zur Geologie des Ölschiefervorkommens von Messel bei Darmstadt. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines, Neue Folge 38:11–21CrossRefGoogle Scholar
  51. Merlis TM, Schneider T, Bordoni S, Eisenman I (2013) The tropical precipitation response to orbital precession. J Clim 26:2010–2021CrossRefGoogle Scholar
  52. Mertz DF, Renne PR (2005) A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. In: Harms FJ, Schaal S (eds) Current Geological and Paleontological research in the Messel Formation. Cour For Senckenbg 255:67–75Google Scholar
  53. Molina E, Alegret L, Apellaniz E, Bernaola G, Caballero F, Dinarès-Turell J, Hardenbol J, Heilman-Clausen C, Larrasoaña JC, Luterbacher H, Monechi S, Ortiz S, Orue-Etxebarria X, Payros A, Pujalte V, Rodríguez-Tovar FJ, Tori F, Tosquella J, Uchman A (2011) The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain. Episodes 34:86–108Google Scholar
  54. Mourik AA, Bijkerk JF, Cascella A, Hüsing SK, Hilgen FJ, Lourens LJ, Turco E (2010) Astronomical tuning of the La Vedova High Cliff section (Ancona, Italy)—implications of the Middle Miocene Climate Transition for Mediterranean sapropel formation. Earth Planet Sci Lett 297:249–261. doi: 10.1016/j.epsl.2010.06.026 CrossRefGoogle Scholar
  55. Nickel B (1996) Die mitteleozäne Mikroflora von Eckfeld bei Manderscheid/Eifel. Mainzer Naturwiss Arch Beiheft 18:1–121Google Scholar
  56. Popescu SM, Suc JP, Loutre MF (2006) Early Pliocene vegetation changes forced by eccentricity-precession. Example from Southwestern Romania. Palaeogeogr Palaeoclimatol 238:340–348CrossRefGoogle Scholar
  57. Renne PR (2013) Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. In: Jourdan F, Mark DF, Verati C (eds) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Geol Soc Lond Spec Publ 378:21–31. doi: 10.1144/SP378.17
  58. Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  59. Renne PR, Mundil R, Balco G, Min KW, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology. Geochim Cosmochim Ac 74:5349–5367CrossRefGoogle Scholar
  60. Renne PR, Balco G, Ludwig KR, Mundil R, Min KW et al (2011) Response to the comment by W.H. Schwarz, on “Joint determination of 40 K decay constants and 40Ar*/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar chronology” by PR Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100CrossRefGoogle Scholar
  61. Rivera TA, Storey M, Zeeden C, Hilgen FJ, Kuiper K (2011) A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth Planet Sci Lett 311:420–426CrossRefGoogle Scholar
  62. Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930CrossRefGoogle Scholar
  63. Röhl U, Westerhold T, Monechi S, Thomas E, Zachos JC, Donner B (2005) The third and final Early Eocene Thermal Maximum: characteristics, timing and mechanisms of the “X” event. Geol Soc Am Abstr Prog 37(7):264Google Scholar
  64. Schulz R, Harms FJ, Felder M (2002) Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z Angew Geol 48:9–17Google Scholar
  65. Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:1006. doi: 10.1029/2001TC900022,200 CrossRefGoogle Scholar
  66. Sluijs A, Schouten S, Donders TH, Schoon PL, Röhl U, Reichart GJ, Sangiorgi F, Kim JH, Sinninghe Damsté JS, Brinkhuis H (2009) Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat Geosci 2:777–780. doi: 10.1038/ngeo668 CrossRefGoogle Scholar
  67. Tuenter E, Weber SL, Hilgen FJ, Lourens LJ, Ganopolski A (2005) Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Clim Dyn 24:279–295CrossRefGoogle Scholar
  68. Van Vugt N, Langereis CG, Hilgen FJ (2001) Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: dominant expression of eccentricity versus precession. Palaeogeogr Palaeoclimatol 172:193–205CrossRefGoogle Scholar
  69. Varadi F, Runnegar B, Ghil M (2003) Successive refinements in long-term integrations of planetary orbits. Astrophys J 592:620–630. doi: 10.1086/375560 CrossRefGoogle Scholar
  70. Westerhold T, Röhl U, Raffi I, Fornaciari E, Monechi S, Reale V, Bowles J, Evans HF (2008) Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol 257:377–403. doi: 10.1016/j.palaeo.2007.09.016 CrossRefGoogle Scholar
  71. Westerhold T, Röhl U, Laskar J (2012) Time scale controversy: accurate orbital calibration of the early Paleogene. Geochem Geophy Geosyst 13:Q06015. doi: 10.1029/2012GC004096 CrossRefGoogle Scholar
  72. Wing SL, Currano ED (2013) Plant response to a global greenhouse event 56 million years ago. Am J Bot 100:1234–1254CrossRefGoogle Scholar
  73. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–996CrossRefGoogle Scholar
  74. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 to present. Science 292:686–693. doi: 10.1126/science.1059412 CrossRefGoogle Scholar
  75. Zachos JC, Mc Carren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Olaf K. Lenz
    • 1
    Email author
  • Volker Wilde
    • 2
  • Dieter F. Mertz
    • 3
  • Walter Riegel
    • 2
    • 4
  1. 1.Angewandte Sedimentgeologie, Institut für Angewandte GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Sektion PaläobotanikSenckenberg Forschungsinstitut und NaturmuseumFrankfurt am MainGermany
  3. 3.Institut für GeowissenschaftenJohannes Gutenberg Universität MainzMainzGermany
  4. 4.GeobiologieGeowissenschaftliches Zentrum GöttingenGöttingenGermany

Personalised recommendations