Skip to main content
Log in

Geochemical and petrological constraints on mantle composition of the Ohře(Eger) rift, Bohemian Massif: peridotite xenoliths from the České Středohoří Volcanic complex and northern Bohemia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Ohře(Eger) rift in the Bohemian Massif, which represents part of the Cenozoic Central European Volcanic Province, contains abundant mantle xenoliths of spinel peridotite. Petrography, geothermometry, mineral compositions and whole-rock and clinopyroxene trace element compositions of xenolith suites from four localities in the central part České Středohoří Volcanic complex (CSVC) and one locality in the eastern continuation (northern Bohemia) of the rift system display important differences that reveal small-scale compositional heterogeneity of the mantle. The xenoliths from the CSVC are mostly harzburgite that experienced high degrees of partial melting from ~17 to 21 %. However, xenoliths from one locality, Medvědický vrch, are predominantly fertile lherzolite. Subsequent pervasive metasomatism produced enrichments in light rare earth elements, large-ion lithophile elements, and U and Th, except for xenoliths from Medvědický vrch, which show marked depletions in all these elements. Such composition most likely reflects refertilization of the source rock by depleted melts. The trace element characteristics of the CSVC xenoliths indicate metasomatism of a depleted protolith by silicate melt at high melt/rock ratios. In contrast, harzburgite xenoliths from northern Bohemia experienced metasomatism at low melt/rock ratios by more evolved, alkaline and carbonate-rich melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman L, Mahlen N, Jelínek E, Medaris LG, Ulrych J, Strnad L, Mihaljevič M (2007) Geochemistry and evolution of subcontinental lithospheric mantle in Central Europe: evidence from peridotite xenoliths of the Kozákov volcano, Czech Republic. J Petrol 48:2235–2260

    Article  Google Scholar 

  • Ackerman L, Špaček P, Medaris G, Hegner E, Svojtka M, Ulrych J (2012) Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif. J Geosci 58:199–219

    Google Scholar 

  • Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Babuška V, Plomerová J (1992) The lithosphere in central Europe-seismological and petrological aspects. Tectonophysics 207:141–163

    Article  Google Scholar 

  • Babuška V, Plomerová J (2006) European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys Earth Planet Inter 158:264–280

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Bedini RM, Bodinier J-L (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: iCP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Bedini RM, Bodinie JL, Dautria JM, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83

    Article  Google Scholar 

  • Bertrand P, Mercier J-CC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet Sci Lett 76:109–122

    Article  Google Scholar 

  • Blusztajn J, Hart SR (1989) Sr, Nd, and Pb isotopic character of Tertiary basalts from southwest Poland. Geochim Cosmochim Acta 53:2689–2696

    Article  Google Scholar 

  • Blusztajn J, Shimizu N (1994) The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chem Geol 111:227–243

    Article  Google Scholar 

  • Brandová J, Holub FV (2003) Petrologie plášťových xenolitů z alkalických neovulkanitů severních Čech. Zprávy o Geol Výzkumech v roce 2002:162–163

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites: iI. New thermobarometers and practical assessment of existing thermobarometry. J Petrol 31:1352–1378

    Google Scholar 

  • Büchner J, Tietz O, Viereck-Goette L, Abratis M, Stanek K, Suhr P, Pfänder JA (2013) The Lusatian volcanic field—link between the Ohře Rift and the Eastern European Volcanoes. In: Büchner J, Rapprich V, Tietz O (eds) Abstracts and excursion guides from the conference basalt 2013. Czech Geological Survey and Senckenberg Museum of natural history Görlitz, Prague-Görlitz, pp 72–73

  • Cajz V, Vokurka K, Balogh K, Lang M, Ulrych J (1999) The České Středohoří Mts.: volcanostratigraphy and geochemistry. Geolines 9:21–28

    Google Scholar 

  • Cajz V, Rapprich V, Erban V, Pecskay Z, Radoň M (2009) Late Miocene volcanic activity in the Ceske stredohori Mountains (Ohre/Eger Graben, northern Bohemia). Geol Carp 60:519–533

    Google Scholar 

  • Christensen N, Medaris LG, Wang HF, Jelínek E (2001) Depth variation of seismic anisotropy and petrology in central European lithosphere: a tectonothermal synthesis from spinel lherzolite. J Geophys Res 106:645–664

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250

    Article  Google Scholar 

  • Eggins S, Rudnick R, McDonough W (1998) The composition of peridotites and their minerals: a laser-ablation ICP–MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terranes boundaries and plate tectonic evolution. J Geol Soc 179:35–61

    Google Scholar 

  • Frýda J, Vokurka K (1995) Evidence for carbonatite metasomatism in the upper mantle beneath the Bohemian Massif. J Czech Geol Soc 43:9–10

    Google Scholar 

  • Geissler WH, Kämpf H, Seifert W, Dulski P (2007) Petrological and seismic studies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia, central Europe. J Volcanol Geotherm Res 159:33–69

    Article  Google Scholar 

  • Govindaraju K (1989) Compilation of working values and sample description for 273 geostandards. Geostand Newslett J Geostand Geoanal 13:1–113

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  Google Scholar 

  • Gregoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257:192–202

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150:486–504

    Article  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530

    Article  Google Scholar 

  • Holub FV, Rapprich V, Erban V, Pécskay Z, Mlčoch B, Míková J (2012) Petrology and geochemistry of the Tertiary alkaline intrusive rocks at Doupov, Doupovské hory Volcanic Complex (NW Bohemian Massif). J Geosci 55:251–278

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297

    Article  Google Scholar 

  • Ionov DA, Bodinier J, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Article  Google Scholar 

  • Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253:50–53

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990) Reaction between ultramafic rock and fractionating basaltic magma: II. experimental investigation of reaction between olivine tholeiite and harzburgite at 1150–1050 C and 5 kb. J Petrol 31:99–134

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  Google Scholar 

  • Konečný P, Ulrych J, Schovánek P, Huraiová M, Řanda Z (2006) Upper mantle xenoliths from the Pliocene Kozákov volcano (NE Bohemia): P-T-f O2 and geochemical constraints. Geol Carp 57:379–396

    Google Scholar 

  • Kopecký L (1978) Neoidic taphrogenic evolution of young alkaline volcanism of the Bohemian Massif. Sborník Geol Věd, Řada Geol 30:91–107

    Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Lenoir X, Garrido CJ, Bodinier JL, Dautria JM (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nov 13:122–128

    Article  Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Matusiak-Małek M, Puziewicz J, Ntaflos T, Grégoire M, Downes H (2010) Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: a case study of Lutynia (SW Poland) peridotite xenoliths. Lithos 117:49–60

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McDonough WF, Stosch H, Ware NG (1992) Distribution of titanium and the rare earth elements between peridotitic minerals. Contrib Mineral Petrol 110:321–328

    Article  Google Scholar 

  • Medaris LG, Fournelle JH, Wang HF, Jelínek E (1997) Thermobarometry and reconstructed chemical compositions of spinel-pyroxene symplectites: evidence for pre-existing garnet in lherzolite xenoliths from Czech Neogene lavas. Russ Geol Geophys 38:277–286

    Google Scholar 

  • Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation - the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, Chichester

    Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise geochemistry, vol 2—Mantle Core. Elsevier Pergamon, Amsterdam, pp 171–275

  • Prodehl C, Mueller S, Haak V (1995) The European cenozoic rift system. In: Olsen KH (ed) Continental Rifts: Evolution, Structure, Tectonics. Elsevier, pp 133–212

  • Puziewicz J, Koepke J, Gregoire M, Ntaflos T, Matusiak-Malek M (2011) Lithospheric mantle modification during Cenozoic rifting in Central Europe: evidence from the Ksieginki nephelinite (SW Poland) xenolith suite. J Petrol 52:2107–2145

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosci 341:266–286

    Article  Google Scholar 

  • Špaček P, Ackerman L, Habler G, Abart R, Ulrych J (2013) Garnet breakdown, symplectite formation and melting in basanite-hosted peridotite xenoliths from Zinst (Bavaria, Bohemian Massif). J Petrol 54:1691–1723

    Article  Google Scholar 

  • Tabor FA, Tabor BE, Downes H (2010) Quantitative characterization of textures in mantle spinel peridotite xenoliths. In: Coltorti M, Downes H, Gregoire M, O`Reilly S (eds) Petroleum evaluation Europe lithospheric mantle. Geological Society of London, London, pp 195–211

    Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M, Bodinier JL (1992) Geochemical evidence for melt migration and reaction in the upper mantle. Nature 359:55–58

    Article  Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues J Mineral Abh 172:381–408

    Google Scholar 

  • Ulrych J, Adamovič J (2004) Ultra)mafické plášťové xenolity v kenozoických alkalických vulkanitech Českého Masivu (Česká Republika. Miner Slovaca 36:205–215

    Google Scholar 

  • Ulrych J, Pivec E, Povondra P, Rutsek J (2000) Upper-mantle xenoliths in mellitic rocks of the Osecna Complex, North Bohemia. J Czech Geol Soc 45:79–83

    Google Scholar 

  • Ulrych J, Svobodová J, Balogh K (2002) The source of Cenozoic volcanism in the České Středohoří Mts., Bohemian Massif. Neues Jahrb Mineral Abh 177:133–162

    Article  Google Scholar 

  • Ulrych J, Lloyd FE, Balogh K (2003) Age relations and geochemical constraints of Cenozoic alkaline volcanic series in W Bohemia: a review. Geolines 15:168–180

    Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed) Laser-ablation-ICPMS earth Science Principle Application. Mineralogical Association of Canada, Québec, pp 239–243

  • Van der Wal D, Bodinier JL (1996) Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melt flow. Contrib Mineral Petrol 122:387–405

    Article  Google Scholar 

  • Walter MJ (2004) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) Treatise Geochemistry, Vol. 2—Mantle Core. Elsevier Pergamon, Oxford, pp 363–394

  • Wilson M, Downes H (1991) Tertiary Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849

    Article  Google Scholar 

  • Witt-Eickschen G (1993) Upper mantle xenoliths from alkali basalts of the Vogelsberg, Germany—implication for mantle upwelling and metasomatism. Eur J Mineral 5:361–376

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439. doi:10.1007/BF00321986

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Ziegler P (1994) Cenozoic rift system of Western and Central Europe—an overview. Geol en Mijnb 73:99–127

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (Projects 205/09/1170 and P210/12/1990). The research was also supported by the Scientific Programme CEZ: RVO67985831 of the Institute of Geology, Acad. Sci. CR. We are grateful to Jana Ďurišová for help with LA-ICP-MS analyses and Šárka Matoušková for whole-rock solution ICP-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Ackerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackerman, L., Medaris, G., Špaček, P. et al. Geochemical and petrological constraints on mantle composition of the Ohře(Eger) rift, Bohemian Massif: peridotite xenoliths from the České Středohoří Volcanic complex and northern Bohemia. Int J Earth Sci (Geol Rundsch) 104, 1957–1979 (2015). https://doi.org/10.1007/s00531-014-1054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1054-1

Keywords

Navigation