Skip to main content
Log in

Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine–augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca–Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in \(\log [(a_{{{\text{Na}}^{ + } }} )/(a_{{{\text{H}}^{ + } }} )]\) and decrease in \(\log [(a_{{{\text{Ca}}^{2 + } }} )/(a_{{{\text{H}}^{ + } }}^{2} )]\) of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akizuki M, Harada K (1988) Symmetry, twinning, and parallel growth of scolecite, mesolite, and natrolite. Am Mineral 73:613–618

    Google Scholar 

  • Albrecht A (1981) Mineralogische Untersuchungen des Phonoliths vom Fohberg, Kaiserstuhl, mit besonderer Berücksichtigung der mafischen und akzessorischen Minerale. Albert-Ludwigs-University, Freiburg, p 146

    Google Scholar 

  • Allah BK, Fontan F, Kadar M, Monchoux P, Sørensen H (1998) Reactions between agpaitic nepheline syenitic melts and sedimentary carbonate rocks, exemplified by the Tamazeght complex, Morocco. Geochem Int 36:841–847

    Google Scholar 

  • Andersen T, Erambert M, Larsen AO, Selbekk RS (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J Petrol 51:2303–2325

    Google Scholar 

  • Baranyi I, Lippold HJ, Todt W (1976) Kalium-Argon-Alterbestimmungen an tertiären Vulkaniten des Oberrheingraben-Gebietes: II Die Alterstraverse vom Hegau nach Lothringen. Oberrhein Geol Abh 25:41–62

    Google Scholar 

  • Bellezza M, Merlino S, Perchiazzi N (2004) Chemical and structural study of the Zr, Ti-disilicates in the venanzite from Pian di Celle, Umbria, Italy. Eur J Mineral 16:957–969

    Google Scholar 

  • Birsoy R (2002) Formation of sepiolite–palygorskite and related minerals from solution. Clays Clay Miner 50:736–745

    Google Scholar 

  • Boles JR, Coombs DS (1977) Zeolite facies alteration of sandstones in the Southland Syncline, New Zealand. Am J Sci 277:982–1012

    Google Scholar 

  • Boles JR, Franks SG (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation. J Sediment Petrol 49:55–70

    Google Scholar 

  • Boles JR, Surdam RC (1979) Diagenesis of volcanogenic sediments in a Tertiary saline lake; Wagon Bed Formation, Wyoming. Am J Sci 279:832–853

    Google Scholar 

  • Bourgeois O, Ford M, Diraison M, de Veslud CLC, Gerbault M, Pik R, Ruby N, Bonnet S (2007) Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. Int J Earth Sci 96:1003–1031

    Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer, Berlin

    Google Scholar 

  • Bucher K, Weisenberger T (2013) Fluid-induced mineral composition adjustments during exhumation: the case of Alpine stilbite. Contrib Mineral Petrol 166:1489–1503

    Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Google Scholar 

  • Callen RA (1984) Clays of the palygorskite–sepiolite group: depositional environment, age and distribution. In: Singer A, Galan E (eds) Developments in sedimentology. Elsevier, Amsterdam, pp 1–37

    Google Scholar 

  • Christiansen CC, Johnsen O, Makovicky E (2003) Crystal chemistry of the rosenbuschite group. Can Mineral 41:1203–1224

    Google Scholar 

  • Colella C, Md Gennaro, Aiello R (2001) Use of zeolitic tuff in the building industry. Rev Mineral Geochem 45:551–587

    Google Scholar 

  • Coulson IM (2003) Evolution of the North Qôroq centre nepheline syenites, South Greenland: alkali-mafic silicates and the role of metasomatism. Mineral Mag 67:873–892

    Google Scholar 

  • Czygan W (1973) Götzenit, ein komplexes Ti-Zr-Silikat aus dem Kaiserstuhl. Ber Naturforsch Ges Freibg Br 63:5–12

    Google Scholar 

  • Deer WA, Howie RA, Wise WS, Zussman J (2004) Framework silicates: silica minerals, feldspathoids and the zeolites. The Geological Society of London, London

    Google Scholar 

  • Dutrow BL, Travis BJ, Gable CW, Henry DJ (2001) Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution. Geochim Cosmochim Acta 65:3749–3767

    Google Scholar 

  • Ferguson LJ, Edgar AD (1978) The petrogenesis and origin of the analcime in the volcanic rocks of the Crowsnest Formation, Alberta. Can J Earth Sci 15:69–77

    Google Scholar 

  • Fridriksson T, Neuhoff PS, Arnórsson S, Bird DK (2001) Geological constraints on the thermodynamic properties of the stilbite–stellerite solid solution in low-grade metabasalts. Geochim Cosmochim Acta 65:3993–4008

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest In: Fleischer M (ed) Data of geochemistry. U.S. Geological Survey Professional Paper

  • Fuentes F, Aguirre L, Vergara M, Valdebenito L, Fonseca E (2004) Miocene fossil hydrothermal system associated with a volcanic complex in the Andes of central Chile. J Volcan Geotherm Res 138:139–161

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Gilg HA, Morteani G, Kostitsyn Y, Preinfalk C, Gatter I, Strieder A (2003) Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner Depos 38:1009–1025

    Google Scholar 

  • Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) Nomenclature of the garnet supergroup. Am Mineral 98:785–811

    Google Scholar 

  • Güven N, Carney LL (1979) The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides. Clays Clay Miner 27:253–260

    Google Scholar 

  • Hauri F (2006) Natural zeolites from southern Germany: applications in concrete In: Bowmann RS, Delap SE (eds) Zeolite’06—7th international conference on the occurrence, properties, and utilization of natrural zeolites. Socorro, New Mexico, USA, p 130

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Hoefs J (1973) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Hubberten HW, Katz-Lehnert K, Keller J (1988) Carbon and oxygen isotope investigations in carbonatites and related rocks from the Kaiserstuhl, Germany. Chem Geol 70:257–274

    Google Scholar 

  • Hüttner R (1996) Tektonik im Grundgebirge. In: Groschopf R, Kessler G, Leiber J, Maus H, Ohmert W, Schreiner A, Wimmenauer W (eds) Geologsiche Karte von Baden-Württemberg 1:50000, Freiburg iBr und Umgebung. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg, pp 119–228

    Google Scholar 

  • Ibrahim K (2004) Mineralogy and chemistry of natrolite from Jordan. Clay Miner 39:47–55

    Google Scholar 

  • Ibrahim K, Hall A (1996) The authigenic zeolites of the Aritayn Volcaniclastic Formation, north-east Jordan. Miner Depos 31:514–522

    Google Scholar 

  • Isphording WC (1973) Discussion of the occurrence and origin of sedimentary palygorskite–sepiolite deposits. Clays Clay Miner 21:591–601

    Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18:899–947

    Google Scholar 

  • Kallo D (2001) Applications of natural zeolites in water and wastewater treatment. Rev Mineral Geochem 45:519–550

    Google Scholar 

  • Karup-Møller S (1969) Xonotlite-, pectolite- and natrolite-bearing fracture veins in volcanic rocks form Nuussuaq, West Greenland. Grønlands Geologiske Undersøgelse 80:4–20

    Google Scholar 

  • Kassautzki M (1983) Phonolith als puzzolanischer Zumahlstoff in der Zementindustrie. Zem-Kalk-Gips Int 36:688–692

    Google Scholar 

  • Keller J (1981) Carbonatitic volcanism in the Kaiserstuhl alkaline complex: evidence for highly fluid carbonatitic melts at the earth’s surface. J Volcan Geotherm Res 9:423–431

    Google Scholar 

  • Keller J (1984) Geochemie und Magmenentwicklung im Kaiserstuhl. Fortschr Mineral 62:116–118

    Google Scholar 

  • Keller J (2001) Kaiserstuhl alkaline rock-carbonatitic complex—excursion notes. ESF Carbonatite Workshop, Breisach

    Google Scholar 

  • Kim JS (1985) Petrologie und Geochemie der tephritischen Gesteine im Kaiserstuhl. Albert-Ludwigs-University, Freiburg, p 184

    Google Scholar 

  • Klaproth MH (1803) Chemische Untersuchung des Natroliths. Ges Naturforsch Freunde Berl Neue Schriften 4:243–248

    Google Scholar 

  • Kousehlar M, Weisenberger TB, Tutti F, Mirnejad H (2012) Fluid control on low-temperature mineral formation in volcanic rocks of Kahrizak, Iran. Geofluids 12:295–311

    Google Scholar 

  • Kraml M, Pik R, Rahn M, Selbekk R, Carignan J, Keller J (2006) A new multi-mineral age reference material for 40Ar/39Ar, (U–Th)/He and fission track dating methods: the Limberg t3 tuff. Geostand Geoanal Res 30:73–86

    Google Scholar 

  • Kristmannsdóttir H, Tómasson J (1978) Zeolite zones in geothermal areas in Iceland. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence, properties, usa. Pergamon Press, New York, pp 277–284

    Google Scholar 

  • Land LS (1987) The major ion chemistry of saline brines in sedimentary basins. AIP Conf Proc 154:160–179

    Google Scholar 

  • Leggo PJ, Ledesert B (2001) Use of organo-zeolitic fertilizer to sustain plant growth and stabilize metallurgical and mine-waste sites. Mineral Mag 65:563–570

    Google Scholar 

  • Leggo PJ, Ledesert B, Day J (2010) Organo-zeolitic treatment of mine waste to enhance the growth of vegetation. Eur J Mineral 22:813–822

    Google Scholar 

  • Lippolt HJ, Todt W, Horn P (1974) Apparent potassium–argon ages of Lower Tertiary Rhine Graben volcanics. In: Illies H, Fuchs K (eds) Approaches to taphrogenesis. Schweizerbart, Stuttgart, pp 213–221

    Google Scholar 

  • Machiels L, Garcés D, Snellings R, Vilema W, Morante F, Paredes C, Elsen J (2014) Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: evidence for zeolite formation in cooling marine pyroclastic flow deposits. Appl Clay Sci 87:108–119

    Google Scholar 

  • Markl G, Marks M, Schwinn G, Sommer H (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilímaussaq Complex, South Greenland. J Petrol 42:2231–2257

    Google Scholar 

  • Marks M, Markl G (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilímaussaq Intrusion, South Greenland, as deduced from phase equilibria. J Petrol 42:1947–1969

    Google Scholar 

  • Marzi E (1983) Die Mineralien des Fohbergs bei Bötzingen (Oberschaffhausen) im Kaiserstuhl. Der Aufschluss 34:205–214

    Google Scholar 

  • Mercurio M, Mercurio V, de Gennaro B, de Gennaro M, Grifa C, Langella A, Morra V (2010) Natural zeolites and white wines from Campania Region: a new approach for solving some oenological problems. Period Mineral 79:95–112

    Google Scholar 

  • Mercurio M, Langella A, Cappelletti P, de Gennaro B, Monetti V, de Gennaro M (2012) May the use of Italian volcanic zeolite-rich tuffs as additives in animal diet represent a risk for the human health? Period Mineral 81:393–407

    Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24:209–214

    Google Scholar 

  • Mumpton FA, Roy R (1958) New data on sepiolite and attapulgite. Clays Clay Miner 5:136–143

    Google Scholar 

  • Neuhoff PS (2000) Thermodynamic properties and parageneses of rock-forming zeolites. Stanford University, Stanford, p 240

    Google Scholar 

  • Neuhoff PS, Watt WS, Bird DK, Pedersen AK (1997) Timing and structural relations of regional zeolite zones in basalts of the East Greenland continental margin. Geology 25:803–806

    Google Scholar 

  • Neuhoff PS, Fridriksson T, Arnorsson S, Bird DK (1999) Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland. Am J Sci 299:467–501

    Google Scholar 

  • Neuhoff PS, Fridriksson T, Bird DK (2000) Zeolite parageneses in the north atlantic igneous province: implications for geotectonics and groundwater quality of basaltic crust. Int Geol Rev 42:15–44

    Google Scholar 

  • Neuhoff PS, Hovis GL, Balassone G, Stebbins JF (2004) Thermodynamic properties of analcime solid solutions. Am J Sci 304:21–66

    Google Scholar 

  • Neuhoff PS, Rogers KL, Stannius LS, Bird DK, Pedersen AK (2006) Regional very low-grade metamorphism of basaltic lavas, Disko–Nuussuaq region, West Greenland. Lithos 92:33–54

    Google Scholar 

  • Pabalan RT, Bertetti FP (1999) Experimental and modeling study of ion exchange between aqueous solutions and the zeolite mineral clinoptilolite. J Solut Chem 28:367–393

    Google Scholar 

  • Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. Rev Mineral Geochem 45:453–518

    Google Scholar 

  • Passaglia E (1970) The crystal chemistry of chabazite. Am Mineral 55:1278–1301

    Google Scholar 

  • Passaglia E, Sheppard RA (2001) The Crystal chemistry of zeolites. Rev Mineral Geochem 45:69–116

    Google Scholar 

  • Pauwels H, Fouillac C, Fouillac A-M (1993) Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: origin of compounds and water–rock interactions. Geochim Cosmochim Acta 57:2737–2749

    Google Scholar 

  • Person M, Garven G (1992) Hydrologic constraints on petroleum generation within continental rift basins; theory and application to the Rhine Graben. AAPG Bull 76:468–488

    Google Scholar 

  • Rankenburg K, Lassiter JC, Brey G (2004) Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain—constraints on magma genesis and crustal contamination. Contrib Mineral Petrol 147:129–144

    Google Scholar 

  • Rogers KL, Neuhoff PS, Pedersen AK, Bird DK (2006) CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos 92:55–82

    Google Scholar 

  • Ross M, Flohr MJK, Ross DR (1992) Crystalline solution series and order–disorder within the natrolite mineral group. Am Mineral 77:685–703

    Google Scholar 

  • Sahama TG, Hytönen K (1957) Götzenite and combeite, two new silicates from the Belgian Congo. Mineral Mag 31:503–510

    Google Scholar 

  • Schilling J, Marks MAW, Wenzel T, Vennemann T, Horváth L, Tarassoff P, Jacob DE, Markl G (2011) The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire Complex: insights into the late-stage evolution of peralkaline rocks. J Petrol 52:2147–2185

    Google Scholar 

  • Schleicher H, Keller J, Kramm U (1990) Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal Republic of Germany. Lithos 26:21–35

    Google Scholar 

  • Schleicher H, Baumann A, Keller J (1991) Pb isotopic systematics of alkaline volcanic rocks and carbonatites from the Kaiserstuhl, Upper Rhine rift valley, F.R.G. Chem Geol 93:231–243

    Google Scholar 

  • Schreiner A (1996) Tektonik der Vorbergzone und der Oberrheinebene. In: Groschopf R, Kessler G, Leiber J, Maus H, Ohmert W, Schreiner A, Wimmenauer W (eds) Geologsiche Karte von Baden-Württemberg 1:50000, Freiburg iBr und Umgebung. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg, pp 229–241

    Google Scholar 

  • Schultz JL, Boles JR, Tilton GR (1989) Tracking calcium in the San Joaquin basin, California: a strontium isotopic study of carbonate cements at North Coles Levee. Geochim Cosmochim Acta 53:1991–1999

    Google Scholar 

  • Schwinn G, Wagner T, Baatartsogt B, Markl G (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982

    Google Scholar 

  • Sjöqvist ASL, Cornell DH, Andersen T, Erambert M, Ek M, Leijd M (2013) Three compositional varieties of rare-earth element ore: eudialyte-group minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals 3:94–120

    Google Scholar 

  • Stober G (1955) Kleintektonische Untersuchungen im Gebiet des Kaiserstuhls und des Limberges. Albert-Ludwigs-University, Freiburg, p 71

    Google Scholar 

  • Sukheswala RN, Avasia RK, Gangopadhyay M (1974) Zeolites and associated secondary minerals in the Deccan Traps of Western India. Mineral Mag 39:658–671

    Google Scholar 

  • Surdam RC, Boles JR (1979) Diagenesis of volcanic sandstones. SEPM Spec Publ 26:227–442

    Google Scholar 

  • Taylor HP Jr, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochim Cosmochim Acta 31:407–430

    Google Scholar 

  • Tchernev DI (2001) Natural zeolites in solar energy heating, cooling, and energy storage. Rev Mineral Geochem 45:589–617

    Google Scholar 

  • Vetter O (1938) Die Eruptivgesteine das Hegaus, ihre hydrothermalen Umwandlungen und Neubildungen. Neues Jb Miner Geol Abh 73:79–136

    Google Scholar 

  • Vuorinen JH, Hålenius U, Whitehouse MJ, Mansfeld J, Skelton ADL (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island, Sweden. Lithos 81:55–77

    Google Scholar 

  • Walker GPL (1960) The amygdale minerals in the Tertiary lavas of Ireland. III. Regional distribution. Mineral Mag 32:503–527

    Google Scholar 

  • Wedepohl KH, Gohn E, Hartmann G (1994) Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contrib Mineral Petrol 115:253–278

    Google Scholar 

  • Weisenberger T, Bucher K (2010) Zeolites in fissures of granites and gneisses of the Central Alps. J Metamorph Geol 28:825–847

    Google Scholar 

  • Weisenberger T, Bucher K (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps. Contrib Mineral Petrol 162:61–81

    Google Scholar 

  • Weisenberger T, Selbekk R (2009) Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland. Int J Earth Sci 98:985–999

    Google Scholar 

  • Weisenberger T, Spürgin S (2009) Zeolites in alkaline rocks of the Kaiserstuhl Volcanic Complex, SW Germany—new microprobe investigation and the relationship of zeolite mineralogy to the host rock. Geol Belg 12:75–91

    Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ion 131:175–188

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187

    Google Scholar 

  • Wimmenauer W (1957) Beiträge zur Petrographie des Kaiserstuhls. Einführung und Teil I: Die Ergußgesteine und Tuffe. Neues Jb Miner Abh 91:131–150

    Google Scholar 

  • Wimmenauer W (1959a) Beiträge zur Petrographie des Kaiserstuhls. Schluß von Teil I: Die Ergußgesteine und Tuffe. Teil II: Die essexitisch-theralitischen subvulkanischen Intrusivegesteine. Teil III: Die Ganggesteine der essexitischen Fanilie. Neues Jb Miner Abh 93:133–173

    Google Scholar 

  • Wimmenauer W (1959b) Die Minerale des Kaiserstuhls. Der Aufschluss 10:181–202

    Google Scholar 

  • Wimmenauer W (1962) Beiträge zur Petrographie des Kaiserstuhls: Teil IV Die Gesteine der phonolithischen Familie. Teil V: Die subvulkanischen Breccien. Neues Jb Miner Abh 98:367–415

    Google Scholar 

  • Wimmenauer W (1963) Beiträge zur Petrographie des Kaiserstuhls: Teil VI: Die Karbonatite. Teil VII: Zur Petrogenese des Kaiserstuhls. Neues Jb Miner Abh 99:231–276

    Google Scholar 

  • Wimmenauer W (2003) Geologische Karte von Baden-Württemberg 1:25000, Kaiserstuhl. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg

    Google Scholar 

  • Wimmenauer W (2010) Kalkadern in vulkanischen und Sedimentgesteinen des Kaiserstuhls. Mitt bad Landesver Naturkunde Naturschutz 21:49–67

    Google Scholar 

  • Yagi K, Kikuchi T, Kakuta H (1968) Thermal decomposition of pectolite and its hydrothermal synthesis. J Fac Sci Hokkaido Univ Ser 4 Geol Mineral 14:123–134

    Google Scholar 

  • Zaitsev AN, Marks MAW, Wenzel T, Spratt J, Sharygin VV, Strekopytov S, Markl G (2012) Mineralogy, geochemistry and petrology of the phonolitic to nephelinitic Sadiman volcano, Crater Highlands, Tanzania. Lithos 152:66–83

    Google Scholar 

  • Zen E-A (1961) The zeolite facies; an interpretation. Am J Sci 259:401–409

    Google Scholar 

Download references

Acknowledgments

We are grateful to Hans G. Hauri Mineralstoffwerke for providing access to the Fohberg quarry and support of this study. We thank Sari Forss for thin section preparation, Leena Palmu for her advice and help with the electron microprobe, and Shenhong Yang for help with Sr-isotopic analyses. We thank Lieven Machiels for his detailed and constructive comments and Wolf-Christian Dullo for his efforts and the editorial handling of the paper. Special thanks to the Holopainen Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Björn Weisenberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisenberger, T.B., Spürgin, S. & Lahaye, Y. Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany. Int J Earth Sci (Geol Rundsch) 103, 2273–2300 (2014). https://doi.org/10.1007/s00531-014-1046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1046-1

Keywords

Navigation