International Journal of Earth Sciences

, Volume 103, Issue 8, pp 2315–2326 | Cite as

Clay mineralogy of the ocean sediments from the Wilkes Land margin, east Antarctica: implications on the paleoclimate, provenance and sediment dispersal pattern

  • Kamlesh Verma
  • Sanjeeb Bhattacharya
  • P. Biswas
  • Prakash K. Shrivastava
  • Mayuri Pandey
  • N. C. PantEmail author
  • IODP Expedition 318 Scientific Party
Original Paper


Core U1359 collected from the continental rise off Wilkes Land, east Antarctica, is analyzed for the clay mineralogy and carbon content. The temporal variation of the clay mineralogical data shows a dominance of illite with chlorite, smectite and kaolinite in decreasing concentration. Clay mineral illite is negatively correlated with smectite which shows enrichment during 6.2–6.8, 5.5–5.8, 4.5 and 2.5 Ma. The mineralogical analyses on the silt size fraction (2–53 μm) of some selected samples were also carried out. The combined result of both the size fractions shows the presence of chlorite and illite in both size fractions, smectite and kaolinite only in clay size fraction (<2 μm) and similarity in the crystallinity and chemistry of illite in both fractions. Similar nature of illite in both fractions suggests negligible role of sorting probably due to the deposition from the waxing ice sheet. During times of ice growth, nearby cratonic east Antarctica shield provided biotite-rich sediments to the depositional site. On the other hand, the presence of smectite, only in the clay size fraction, suggests the effective role of sorting probably due to the deposition from distal source in ice retreat condition. During times of ice retreat, smectite-rich sediment derived from Ross Orogen is transported to the core site through surface or bottom water currents. Poor crystallinity of illite due to degradation further corroborates the ice retreat condition. The ice sheet proximal sediments of U1359 show that in the eastern part of Wilkes Land, the ‘warming’ was initiated during late Miocene.


Clay minerals Ocean sediments Ice sheet Plio-pleistocene 



The authors thank Director General and Deputy Director General, Geological Survey of India for providing facilities. The authors also thank Shri Basab Chattopadhyay and R.K. Agarwal Director, Geology, Geological Survey of India, Faridabad, for their constant support. This research used samples and data provided by Integrated Ocean Drilling Program (IODP). The National Centre for Antarctic and Ocean Research (NCAOR) funded the project ‘Paleoclimatic and magmato-metamorphic history of Wilkes Land, East Antarctica: constraints from accessory minerals, clay mineralogy and micropaleontology in oceanic sediments’ under which this work was carried out.

Supplementary material

531_2014_1043_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 kb)


  1. Alley RB, McAyeal DR (1994) Ice-rafted debris associated with binge/purge oscillations of the laurentide ice sheet. Palaeoceanography 9(4):503–512. doi: 10.1029/94PA01008 CrossRefGoogle Scholar
  2. Bardin VI (1982) Composition of east Antarctic moraines and some problems of Cenozoic history. In: Craddock C (ed) Antarctic Geoscience Univ. Wisconsin Press, Madison, pp 1069–1076Google Scholar
  3. Barker PF (1992) The sedimentary record of Antarctic climate change. Philos Trans R Soc Lond 338:259–267CrossRefGoogle Scholar
  4. Barker PF (1995) The proximal marine sediment record of Antarctic climate since the Late Miocene. In: Geology and seismic stratigraphy of the Antarctic Margin, Antarctic research series 68:25–57Google Scholar
  5. Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832CrossRefGoogle Scholar
  6. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  7. Caburlotto A (2004) Processi sedimentari di mare profondo sul margine continetale glaciale antarctico. PhD thesis, University of Siena, Italy, pp 143 (unpublished)Google Scholar
  8. Chamley H (1989) Clay sedimentology. Springer, Berlin, p 623CrossRefGoogle Scholar
  9. Claridge GGC (1965) The clay mineralogy and chemistry of some soils from the Ross dependency. Antarct N Z J Geol Geophys 3:186–200CrossRefGoogle Scholar
  10. Cook CP, van de Flierdt T, Williams T, Hemming SR, Iwai M, Kobayash M, Jimenez-Espejo Francisco J, Escutia C, González JJ, Khim BK, McKay Robert M, Passchier S, Bohaty Steven M, Christina R, Tauxe L, Sugisaki S, Lopez Galindo A, Patterson Molly O, Sangiorgi F, Pierce Elizabeth L, Brinkhuis H, IODP Expedition 318 Scientists (2013) Dynamic behaviour of the east Antarctic ice sheet during Pliocene warmth. Nat Geosci 6:765–769. doi: 10.1038/NGEO1889
  11. Cooper AK, O’Brien PE and Richter C (eds) (2004) Proc ODP Sci results, 188. Ocean Drilling Program, College Station, TX. doi: 10.2973/
  12. Damiani D, Giorgetti G, Turbanti IM (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene–Quaternary marine sediments from Wilkes Land continental rise (east-Antarctica): paleoenvironmental significance. Mar Geol 226:281–295CrossRefGoogle Scholar
  13. Denton GH, Hughes TJ (2002) Reconstructing the Antarctic ice sheet at the last glacial maximum. Quat Sci Rev 21:193–202CrossRefGoogle Scholar
  14. Diester-Haass L, Robert C, Chamley H (1993) Paleoceanographic and palaeoclimatic evolution in the Weddell Sea (Antarctica) during the middle Eocene–late Oligocene, from a coarse sediment fraction and clay mineral data (ODP Site 689). Mar Geol 114:233–250CrossRefGoogle Scholar
  15. Ehrmann WU (1998a) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 139:213–231CrossRefGoogle Scholar
  16. Ehrmann WU (1998b) Lower Miocene and quaternary clay mineral assemblages from CRP-1. Terra Antart 5(3):613–619Google Scholar
  17. Ehrmann WU, Mackensen A (1992) Sedimentological evidence for the formation of an east Antarctic ice sheet in eocene/oligocene time. Palaeogeogr Palaeoclimatol Palaeoecol 93:85–112CrossRefGoogle Scholar
  18. Ehrmann WU, Melles M, Kuhn G, Grobe H (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar Geol 107:249–273CrossRefGoogle Scholar
  19. Ehrmann W, Setti M, Marinoni L (2005) Clay minerals in Cenozoic sediments off Cape Robert (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeogr Palaeoclimatol Palaeoecol 229:187–211CrossRefGoogle Scholar
  20. Escutia C, Brinkhuis H, Klaus A, IODP Expedition 318 Scientists (2011) IODP Expedition 318: from greenhouse to icehouse at the Wilkes Land Antarctic margin. Science Reports, Scientific Drilling, No 12, Sept 2011. doi: 10.2204/
  21. Escutia C, Eittreim SL, Cooper AK (1997) Cenozoic sedimentation on the Wilkes Land continental rise, Antarctica. In: Ricci CA (eds) The Antarctic region: geological evolution and processes. Proceedings of international symposium on Antarctic earth science 7, pp 791–795Google Scholar
  22. Escutia C, Eittreim SL, Cooper AK, Nelson CH (2000) Morphology and acoustic 385 character of the Antarctic Wilkes Land turbidite systems: ice-sheet-sourced versus river-sourced fans. J Sediment Res 70(1):84–93. doi: 10.1306/2DC40900-0E47-11D7-3878643000102C1865D CrossRefGoogle Scholar
  23. Escutia C, Warnke D, Acton GD, Barcena A, Burckle L, Canals M, Frazee CS (2003) Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the quaternary. Deep-sea Res Part II 50(8–9):1481–1508. doi: 10.1016/S0967-0645(03)00073-0 CrossRefGoogle Scholar
  24. Escutia C, De Santis L, Donda F, Dunbar RB, Cooper AK, Brancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Glob Planet Change 45(1–3):51–81. doi: 10.1016/j.gloplacha.2004.09.010 CrossRefGoogle Scholar
  25. Esquevin J (1969) Influence de la composition chimique des illites sur le cristallinite´. Bull Centre Rech Pau SNPA 3:147–154Google Scholar
  26. Expedition 318 Scientists (2010) Wilkes Land glacial history: Cenozoic east Antarctic Ice Sheet evolution from Wilkes Land margin sediments. IODP Prel Rept 318. doi: 10.2204/
  27. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2003) Patterns and mechanisms of early pliocene warmth. Nature 496:43–49CrossRefGoogle Scholar
  28. Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation, and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108(3–4):537–555. doi: 10.1016/0031-0182(94)90251-8 CrossRefGoogle Scholar
  29. Gordon AL, Tchernia P (1972) Waters of the continental margin off Ade´lie coast, Antarctica. In: Hayes DE (ed) Antarctic oceanology II: the Australian—New Zealand Sector. Antarctic research series, American Geophysical Union, Washington, pp 59–69Google Scholar
  30. Gradstein FM, Ogg JG, Smith AG (2004) Geologic time scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Grützner J, Hillenbrand C-D, Rebesco M (2005) Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the Late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Glob Planet Change 45(1–3):131–149. doi: 10.1016/j.gloplacha.2004.09.004 CrossRefGoogle Scholar
  32. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  33. Hillenbrand C-D, Ehrmann W (2005) Late Neogene to quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments. Glob Planet Change 45(1–3):165–191. doi: 10.1016/j.gloplacha.2004.09.006 CrossRefGoogle Scholar
  34. Hultzsch N, Wagner B, Diekmann B, White D (2008) Mineralogical implications for the late Pleistocene glaciation in Amery Oasis, east Antarctica, from a lake sediment core. Antarct Sci 20(2):169–172. doi: 10.1017/S0954102007000880 CrossRefGoogle Scholar
  35. Ingólfsson Ó, Hjort C (1999) The Antarctic contribution to Holocene global sea level rise. Polar Res 18:323–330CrossRefGoogle Scholar
  36. Jacksons ML (1979) Soil chemical analysis—advanced course, 2nd edn, 11th printing. Madison, Wisconsin, pp 169–251Google Scholar
  37. Jouzel J, Barkov NI, Barnola JM, Bender M, Chappellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorious C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stevenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364:407–411CrossRefGoogle Scholar
  38. Juntilla J, Strand K (2006) Smectite crystallinity and composition in Pliocene–Pleistocene sediments at the continental rise (ODP Site 1165), Prydz Bay, Antarctica. Terra Antart 13(1/2):23–30Google Scholar
  39. Junttila J, Ruikka M, Strand K (2005) Clay mineral assemblages in high-resolution plio-pleistocene interval at odp site 188-1165, Prydz Bay, Antarctica. Glob Planet Change 45:151–163CrossRefGoogle Scholar
  40. Krantz DE (1991) A chronology of Pliocene se level fluctuations: the U.S. middle Atlantic Coastal Plain record. Quat Sci Rev 10:163–174CrossRefGoogle Scholar
  41. Macphail MK, and Truswell EM (2004) Palynology of site 1166, Prydz Bay, East Antarctica. In: Cooper AK, O’Brien PE, and Richter C (eds) Proc ODP, Sci Results, 188. Ocean Drilling Program, College station, TX, pp 1–43. doi: 10.2973/
  42. Ménot RP, Pêcher A, Rolland Y, Peucat JJ, Pelletier A, Duclaux G, Guillot S (2005) Structural setting of the neoarchean terrains in the Commonwealth Bay Area (143–1458E), Terre Ade´lie Craton, East Antarctica. Gondwana Res 8:1–9CrossRefGoogle Scholar
  43. Oliver RL, Fanning CM (2002) Proterozoic geology east and southeast of Commonwealth Bay, George V land, Antarctica, and its relationship to that of adjacent Gondwana terranes. In: Gamble JA, Skinner DNB, Henry S (eds) Antarctic at the close of a millennium. R Soc N Z Bull 35:51–58Google Scholar
  44. Pant NC, Biswas P, Shrivastava Prakash K, Bhattacharya S, and Verma Kamlesh, Pandey Mayuri and IODP Expedition 318 Scientific Party (2013) Provenance of Pleistocene sediments from Site U1359 of the Wilkes Land IODP Leg 318–evidence for multiple sourcing from the East Antarctic craton and Ross orogen. In: Hambrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JLM. Tranter (eds) Antarctic palaeoenvironments and earth–surface processes. Geol Soc Lond, 381, (in press) doi: 10.1144/SP381.11
  45. Passchier S, O’Brien PE, Damuth JE, Januszczak N, Handwerger DA, Whitehead JM (2003) Pliocene–Pleistocene glaciomarine sedimentation in eastern Prydz Bay, development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica. Mar Geol 199:279–305. doi: 10.1016/S0025-3227(03)00160-9 CrossRefGoogle Scholar
  46. Setti M, Marinoni L, López-Galindo A (2004) Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Miner 39:401–421CrossRefGoogle Scholar
  47. Shipboard Scientific Party (2001) Leg 188 summary: Prydz Bay–cooperation Sea, Antarctica. In: O’Brien PE, Cooper AK, Richter C et al (eds) Proc ODP Init Repts 188. Ocean Drilling Program, College station TX, pp 1–65Google Scholar
  48. Srivastava AK, Khare N, Ingle PS (2008) Characterization of clay minerals in the sediments of Schirmacher Oasis, east Antarctica: their origin and climatological implications. Curr Sci 100(3):363–372Google Scholar
  49. Talarico F, Kleinschmidt G (2003) Structural and metamorphic evolution of the Mertz Shear Zone (East Antarctic Craton, George V Land): implications for Australia/Antarctica correlations and East Antarctic Craton/Ross Orogen relationships. Terra Antart Rep 10:229–248Google Scholar
  50. Tauxe L, Stickley CE, Sugisaki S, Bijl PK, Bohaty SM, Brinkhuis H, Escutia C, Flores JA, Houben AJP, Iwai M, Jiménez-Espejo F, McKay R, Passchier S, Pross J, Riesselman CR, Röhl U, Sangiorgi F, Welsh K, Klaus A, Fehr A, Bendle JAP, Dunbar R, Gonzàlez J, Hayden T, Katsuki K, Olney MP, Pekar SF, Shrivastava PK, van de Flierdt T, Williams T, Yamane M (2012) Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction. Paleoceanography. doi: 10.1029/2012PA002308,2012
  51. Veevers JJ, Saeed A (2011) Age and composition of Antarctic bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Prydz Bay–Wilkes Land–Ross Sea–Marie Byrd Land sector (708–2408E). Gondwana Res 20:710–738CrossRefGoogle Scholar
  52. Wagner B, Cremer H, Hultzsch N, Gore DB, Melles M (2004) Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, east Antarctica, and its climatic and environmental implications. J Paleolimnol 32:321–339CrossRefGoogle Scholar
  53. Webb PN, Harwood DM (1991) Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quaternary Sci Rev 10:215–224CrossRefGoogle Scholar
  54. Webb PN, Harwood DM, McKelvey BC, Mercer JH, Stott LD (1984) Cenozoic marine sedimentation and ice volume variation on east Antarctic craton. Geology 12:287–291CrossRefGoogle Scholar
  55. Whiehead JM, Quilty JM, Harwood DM, McMinn A (2001) Early Pliocene palaeoenvironment of the Sorsdal Formation, Vestfold Hills, based on diatom data. Mar Micropaeont 41:125–152CrossRefGoogle Scholar
  56. Whitehead JM, Bohaty SM (2003) Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography 18(3):1075. doi: 10.1029/2002PA000829 CrossRefGoogle Scholar
  57. Yoon HI, Park BK, Kim Y, Kim D (2000) Glaciomarine sedimentation and its paleoceanographic implications along the fjord margin in the South Shetland Islands, Antarctica during the last 6000 years. Palaeogeogr Palaeoclimatol Palaeoecol 157:189–211CrossRefGoogle Scholar
  58. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature (Lond UK) 451:279–283. doi: 10.1038/nature06588 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kamlesh Verma
    • 1
  • Sanjeeb Bhattacharya
    • 1
  • P. Biswas
    • 2
  • Prakash K. Shrivastava
    • 1
  • Mayuri Pandey
    • 2
  • N. C. Pant
    • 2
    Email author
  • IODP Expedition 318 Scientific Party
    • 2
  1. 1.Geological Survey of IndiaFaridabadIndia
  2. 2.Department of Geology, Center of Advanced StudyUniversity of DelhiDelhiIndia

Personalised recommendations