Skip to main content
Log in

Gravity anomalies, flexure, and deformation of the converging Indian lithosphere in Nepal and Sikkim–Darjeeling Himalayas

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Researchers ubiquitously noted that the common processes of partitioning oblique convergence in response to drag from the trench-hanging plate simultaneously produce radial slips, along-strike translation, and extension parallel to the deformation front. Here, we focus on the area between Nepal and Sikkim–Darjeeling Himalayas, and carry out gravity and finite-element stress modeling of the strike-orthogonal converging Indian lithosphere. We delineate the geometries of different layers and their interfaces through gravity modeling. The optimum model parameters along with rheological parameters of different layers are used for finite-element modeling. Finite-element modeling is done with boundary conditions of keeping the upper surface free and rigidly fixing the section of the northern boundary below the Main Himalayan Thrust. We impart on its frontal section an amount of 6 × 1012 N/m force, equivalent to resistive force of the Himalayan–Tibet system, and analyze the maximum and minimum compressive stress fields evolved in the lithosphere. We testify our observations with earthquake database and other geophysical and geological studies. We note that an increasing flexing of the Indian lithosphere beyond the Main Boundary Thrust becomes maxima between the Main Central Thrust and South Tibetan Detachment in both the areas; however, more steepening of the Moho boundary is identified in the Sikkim–Darjeeling Himalaya. This abrupt change in lithospheric geometry beneath the Greater Himalaya is likely correlated with the sharp elevation changes in the topography. Although the highest seismicity concentration is dominant in this zone, the Lesser and the Tethys Himalayas in Sikkim–Darjeeling area also record relatively fair seismic activity. More compressive stress field in different layers right within the sharp bending zone supports this observation. We thus propose that the sharp bending zone beneath the Greater Himalaya is suffering maximum deformation, and the deformation is continued in the mantle too. We also identify both right-lateral shear and radial vergence slip, which are presumably associated with the general dynamics and kinematics of the Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya SK, Ray KK (1977) Geology of the Darjeeling–Sikkim Himalaya. In: Guide to excursion no. 3, fourth international Gondwana Symposium (Calcutta), Geological Survey of India, pp 1–25

  • Alsdorf D, Makovsky Y, Zhao W, Brown LD, Nelson KD, Klemperer S, Hauck M, Ross A, Cogan M, Clark M, Che J (1998) INDEPTH (International Deep Profiling of Tibet and the Himalaya) multichannel seismic reflection data: description and availability. J Geophys Res 103(26):993–999

    Google Scholar 

  • Ansari MA, Khan PK (2013) Occurrences of damaging earthquakes between the Himachal and Darjeeling Himalayas: tectonic implications. Acta Geophysica (accepted)

  • Argand E (1924) La tectonique de l’ Asie. Int Geol Congr Rep Sess 13:170–372

    Google Scholar 

  • Arora BR, Unsworth MJ, Rawat G (2007) Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications. Geophys Res Let 34(4). doi:10.1029/2006GL029165

  • Artyushkov EV, Baer MA, Morner NA (1996) An independence of subsidence of the Earth crust and mountains building in Carpathians from thrust loading. Trans (Doklady) Russ Acad Sci/Earth Sci Sec 346:103–107

    Google Scholar 

  • Banerjee P, Prakash S (2003) Crustal configuration in north western Himalaya from gravity measurements along Kiratpur-Leh-Panamik transect. Geol Soc India 61:529–539

    Google Scholar 

  • Bapat A, Kulkarni RC, Guha SK (1983) Catalogue of earthquakes in India and neighborhood—from historical period up to 1979. Indian Society of Earthquake Technology, Roorkee

    Google Scholar 

  • Beaumont C, Fullsack P, Hamilton J (1994) Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophys 232:119–132

    Google Scholar 

  • Ben-Menahem A, Aboodi E, Schild R (1974) The source of great Assam earthquake—an interplate wedge motion. Phys Earth Planet Inter 9:265–289

    Google Scholar 

  • Berger A, Jouanne F, Hassani RD, Mugnier JL (2004) Modelling the spatial distribution of the present-day deformation in Nepal: how cylindrical is the main Himalayan thrust in Nepal? Geophys J Int 156:94–114

    Google Scholar 

  • Besse J, Courtillot V, Pozzi JP, Westphal M, Zhou YX (1984) Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature 311:621–626

    Google Scholar 

  • Bilham R, Gaur VK (2000) Geodetic contributions to the study of seismotectonics in India. Curr Sci 79(9):1259–1269

    Google Scholar 

  • Bollinger L, Henry P, Avouac JP (2006) Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet Sci Lett 244:58–71

    Google Scholar 

  • Burbank DW, Beck RA, Mulder T (1996) The Himalayan foreland basin. In: Yin A, Harrison TM (eds) The tectonics of Asia. Cambridge University Press, New York, pp 149–188

    Google Scholar 

  • Burg JP, Chen GM (1984) Tectonics and structural formation of southern Tibet, China. Nature 311:219–223

    Google Scholar 

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105:13389–13407

    Google Scholar 

  • Cattin R, Martelet G, Henry P, Avouac JP, Diament M, Shakya TR (2001) Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Nepal. Geophys J Int 147:381–392

    Google Scholar 

  • Chamlagain D, Hayashi D (2004) Numerical simulation of fault development along NE–SW Himalayan profile in Nepal. J Nepal Geol Soc 29:1–11

    Google Scholar 

  • Chandra U (1978) Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Phys Earth Planet Inter 16:109–131

    Google Scholar 

  • Chen L, Booker JR, Jones AG, Wu N, Unsworth MJ, Wei W, Tan H (1996) Electrically conductive crust in southern Tibet from in depth MT surveying. Sci 274:1694–1696

    Google Scholar 

  • Clark SP Jr (1966) Handbook of physical constants. Geol Soc Am Mem 97:1–587

    Google Scholar 

  • Conrad CP, Hager BH (1999) Effects of plate bending and fault strength at subduction zones on plate dynamics. J Geophys Res 104:17551–17571. doi:10.1029/1999JB900149

    Google Scholar 

  • Copeland P, Harrison TM, Yun P, Kidd WSF, Roden M, Zhang Y (1995) Thermal evolution of the Gangdese batholith, southern Tibet: a history of episodic unroofing. Tectonics 14:223–236

    Google Scholar 

  • Copley A, Avouac JP, Royer JY (2010) India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res 115. doi:10.1029/2009JB006634

  • Cotton F, Campillo M, Deschamps A, Rastogi B (1996) Rupture history and seismotectonics of the 1991 Uttarkashi Himalaya earthquake. Tectonophys 258:35–51

    Google Scholar 

  • Cundall RA (1990) Numerical modelling of jointed and fractured rock. In: Rossmanith HR (ed) Mechanics of jointed and faulted rock. Balkema, Rotterdam, pp 11–28

    Google Scholar 

  • Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active transverse features in the central portion of the Himalaya. Tectonophys 136:255–264

    Google Scholar 

  • De R (2000) A microearthquake survey at the MBT zone: Sikkim Himalaya. J Geophys 21:1–8

    Google Scholar 

  • Debon F, LeFort P, Sherpard SMF, Sonet J (1986) The 4 plutonic belts of the Trans Himalaya and Himalaya—a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27:219–250

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein D (1994) Effect of recent revisions to the geomagnetic reversal time scale and estimates of current plate motions. Geophys Res Lett 21:2191– 2194

  • DMG (1990) Exploration opportunities in Nepal. Department of Mines and Geology, Kathmandu, p 32

    Google Scholar 

  • Duncan C, Masket J, Fielding E (2003) How steep are the Himalaya? Characteristics and implications along-strike topographic variations. Geology 31:75–78

    Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults and internal deformation adjacent to southeast Asia and the western Pacific. J Geophys Res 77:4432–4460

    Google Scholar 

  • Forste C et al (2008) The Geo Forschungs Zentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6):331–346. doi:10.1007/s00190-007-0183-8

    Google Scholar 

  • Gaetani M, Garzanti E (1991) Multicyclic history of the northern India continental margin (northwestern Himalaya). Am Asso Petrol Geol Bull 75:1427–1446

    Google Scholar 

  • Gahalaut VK, Kundu B (2012) Possible influence of subduction ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Res 21:1080–1088

    Google Scholar 

  • Gansser A (1964) Geology of the Himalaya. Intersci Pub, London, pp 1–273

    Google Scholar 

  • Gansser A (1981) The Geodynamic history of the Himalaya. In: Gupta HK, Delany FM (eds) Zagros, Hindu-Kush, Himalaya. Geodynamic evolution. Am Geophys Union, Geodynamics Series 3, Washington, DC, pp 111–121

  • Gokarn SG, Gupta G, Rao CK, Selvaraj C (2002) Electrical structure across the Indus Tsangpo suture and Shyok suture zones in NW Himalaya using magnetotelluric studies. Geophy Res Lett 29(8). doi:10.1029/2001GL014325

  • Hammer P, Berthet T, Hetényi G, Cattin R, Drukpa D, Chophel J, Lechmann S, Le Moigne N, Champollion C, Doeringer E (2013) Flexure of the India Plate underneath the Bhutan Himalaya. Am Geophys Union 40(16):4225–4230. doi:10.1002/grl.50793

    Google Scholar 

  • Hassani R (1994) Modélisation numérique de la déformation des systémes géologiques (Ph.D. Thesis). University of Montpellier II

  • Hassani R, Jongmans D, Chéry J (1997) Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J Geophys Res 102:17951–17965

    Google Scholar 

  • Hauck ML, Nelson KD, Brown LD, Zhao W, Ross AR (1998) Crustal structure of the Himalaya orogen at ∼90° east longitude from INDEPTH deep reflection profiles. Tectonics 17:481–500

    Google Scholar 

  • Hazarika P, Kumar MR, Srijayanthi G, Raju PS, Rao PN, Srinagesh D (2010) Transverse tectonics in the Sikkim Himalaya: evidence from seismicity and focal-mechanism data. Bull Seismol Soc Am 100(4):1816–1822. doi:10.1785/0120090339

    Google Scholar 

  • Heim A, Gansser A (1939) Central himalaya: geological observations of the swiss expedition 1936: Zürich, Memoires de la Société Helvetique des Sciences Naturelles, vol 73. Gebruder Fretz, p 245

  • Hetényi G, Cattin R, Vergne J, Nábělek JL (2006) The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modeling. Geophys J Int 167:1106–1118

    Google Scholar 

  • Hetényi G, Cattin R, Brunet F, Bollinger L, Vergne J, Nábělek JL, Diament M (2007) Density distribution of the India plate beneath the Tibetan plateau: geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth Planet Sci Lett 264:226–244

    Google Scholar 

  • Hirn A, Jobert G, Wittlinger G, Zhong-Xin X, En-Yuan G (1984) Main features of the upper lithosphere in the unit between the High Himalayas and the Yarlung Angbo Jiang suture. Ann Geophys 2:113–118

    Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalayan and southern Tibet from two perspective. Geol Soc Am Bull 112:324–350

    Google Scholar 

  • Hubbard MS, Harrison TM (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and in Tibetan Slab, eastern Nepal Himalaya. Tectonics 8:865–880

    Google Scholar 

  • Ishii M, Shearer PM, Houston H, Vidale JE (2005) Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the hi-net array. Nature 435:933–936

    Google Scholar 

  • Jin Y, McNutt MK, Zhu YS (1996) Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J Geophys Res 101:11275–11290

    Google Scholar 

  • Johnson MRW (2002) Shortening budgets and the role of continental subduction during the India—Asia collision. Earth Sci Rev 59:101–123

    Google Scholar 

  • Jordan TA, Watts AB (2005) Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth Planet Sci Lett 235:732–750

    Google Scholar 

  • Kayal JR (2001) Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophys 339:331–351

    Google Scholar 

  • Khan PK (2005) Variation in dip-angle of the Indian plate subducting beneath the Burma plate and its tectonic implications. Int Geosci J 9:227–234

    Google Scholar 

  • Khan PK (2011) Role of unbalanced slab resistive force in the 2004 off Sumatra mega earthquake (Mw > 9.0) event. Int J Earth Sci 100:1749–1758. doi:10.1007/s00531-010-0576-4

    Google Scholar 

  • Khan PK, Chakraborty PP (2005) Two-phase opening of Andaman Sea: a new seismotectonic insight. Earth Planet Sci Lett 229:259–271

    Google Scholar 

  • Khan PK, Chakraborty PP (2009) Bearing of plate geometry and rheology on shallow-focus mega thrust seismicity with special reference to 26 December 2004 Sumatra event. J Asian Earth Sci 34:480–491

    Google Scholar 

  • Khan PK, Mohanty S, Mohanty M (2010) Geodynamic implications for the 8 October 2005 North Pakistan earthquake. Survey Geophys 31:85–106. doi:10.1007/s10712-009-9083-1

    Google Scholar 

  • Khan PK, Chakraborty PP, Tarafder G, Mohanty S (2012) Testing the intraplate origin of mega-earthquakes at subduction margins. Geosci Front 3:473–481. doi:10.1016/j.gsf.2011.11.012

    Google Scholar 

  • Khan PK, Ansari MA, Mohanty S (2014) Earthquake source characteristics along the arcuate Himalayan belt: its tectonic implications. J Earth Sys Sci (accepted).

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquakes along the Himalayan plate boundary. Tectonophys 1387:9–92

    Google Scholar 

  • Khattri KN, Anderson JG, Brune JN, Zeng Y (1995) Strong ground motion from the Uttarkashi, Himalaya, India, Earthquake: comparison of observations with synthetic using the composite source model. Bull Seismol Soc Am 85(1):31–50

    Google Scholar 

  • Klootwijk CT, Conaghan PJ, Powell CM (1985) The Himalayan arc: large-scale continental subduction, oroclinal bending, and back-arc spreading. Earth Planet Sci Lett 75:316–319

    Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Miner Petrol 123:345–357

    Google Scholar 

  • Krishna VG, Rao VV (2005) Processing and modelling of short-offset seismic refraction—coincident deep seismic reflection data sets in sedimentary basins: an approach for exploring the underlying deep crustal structures. Geophys J Int 163:1112–1122. doi:10.1111/j.1365-246X.2005.02792.x

    Google Scholar 

  • Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105:5735–5770

    Google Scholar 

  • Lay T, Kanamori H, Ammon CJ et al (2005) The great Sumatra–Andaman earthquake of 26 December 2004. Science 308:1127–1133

    Google Scholar 

  • Le Fort P (1975) Himalayas, the collided range: present Knowledge of the continental arc. Am J Sci 275:1–44

    Google Scholar 

  • Le Fort P (1986) Metamorphism and magmatism during the Himalayan collision. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Lond Spec Publ 19:159–172

  • Lemonnier C, Marquis G, Perrier F, Avouac JP, Chitrakar G, Kafle B, Sapkota S, Gautam U, Tiwari D, Bano M (1999) Electrical structure of the Himalaya of Central Nepal: high conductivity around the mid-crustal ramp along the MHT. Geophys Res Lett 26:3261–3264

    Google Scholar 

  • Li C, Hilst RDV, Meltzer AS, Engdahl ER (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274:157–168

    Google Scholar 

  • Liu X, McNally KC, Shen ZK (1995) Evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones. J Geophys Res 100:15351–15372

    Google Scholar 

  • Long S, McQuarrie N, Tobgay T, Grujic D (2011) Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol Soc Am Bull 123:1427–1447. doi:10.1130/B30203.1

    Google Scholar 

  • Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8192

    Google Scholar 

  • Lyon-Caen H, Molnar P (1985) Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics 4:513–538

    Google Scholar 

  • Makel G, Walters J (1993) Finite-element analysis of the thrust tectonics: computer simulation of detachment phase and development of thrust faults. Tectonophys 226:167–185

    Google Scholar 

  • Makovsky Y, Klemperer SL, Huang L, Lu D, Project INDEPTH Team (1996) Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data. Tectonics 15:997–1005

    Google Scholar 

  • McCaffery R (1996) Estimates of modern arc-parallel strain rates in fore arcs. Geology 24:27–30

    Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97:8905–8915

    Google Scholar 

  • McCaffrey R, Nabalek J (1998) Role of oblique convergence in the active deformation of the Himalayas and Southern Tibet. Geology 26:691–694

    Google Scholar 

  • McQuarrie N, Robinson D, Long S, Tobgay T, Grujic D, Gehrels G, Ducea M (2008) Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth Planet Sci Lett 272:105–117. doi:10.1016/j.epsl.2008.04.030

    Google Scholar 

  • Meigs AJ, Burbank DW, Beck RA (1995) Middle-late Miocene (>10 Ma) formation of the Main Boundary Thrust in the western Himalaya. Geology 23(5):423–462. doi:10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2

    Google Scholar 

  • Mikhailov AV, Marin D (2001) An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Ann Geophys 19:733–748

  • Mikhailov VO, Smolyaninov EI, Sebrier M (2002) Numerical modeling of neotectonic movements and the state of stressing the north Caucasus foredeep. Tectonics 21:1–14

    Google Scholar 

  • Molnar P (1983) Average regional strain due to slip on numerous faults of different orientations. J Geophys Res 88:6430–6432

    Google Scholar 

  • Molnar P (1984) Structure and tectonics of the Himalaya: constraints and implications of geophysical data. Ann Rev Earth Planet Sci 12:489–518

    Google Scholar 

  • Molnar P (1988) Continental tectonics in the aftermath of plate tectonics. Nature 335:131–137

    Google Scholar 

  • Molnar P, Tapponnier P (1978) Active tectonics of Tibet. J Geophys Res 83:5361–5369

    Google Scholar 

  • Monsalve G, Sheehan A, Schulte-Pelkum V, Rajaure S, Pandey MR, Wu F (2006) Seismicity and one dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. J Geophys Res 111. doi:10.1029/2005JB004062

  • Nábelek J, Hetènyi G, Vergne J, Sapkota S, Kae B, Jiang M, Su HP, Chen J, Huang BS (2009) Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325:1371–1374

    Google Scholar 

  • Nelson M, Humphrey W, Gursoy A, Dalke A, Kalé L, Skeel RD, Schulten K (1996) NAMD—a parallel, object-oriented molecular dynamics program. J Supercomput Appl 10:251–268

    Google Scholar 

  • Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian Plate beneath the Himalaya. J Geophys Res 89:1147–1163

    Google Scholar 

  • Owens TJ, Zandt G (1997) The implications of crustal property variations on models of Tibetan Plateau evolution. Nature 387:37–43

    Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP, Vergne J, Heritier Th (1999) Seismotectonics of the Nepal Himalaya from a local seismic network. J Asian Earth Sci 17:703–712

    Google Scholar 

  • Patriat P, Achache J (1984) India–Eurasia collision chronology has implications for crustal shortening and driving mechanism for plates. Nature 311:615–621

    Google Scholar 

  • Patro PK, Harinarayan T (2009) Deep geoelectric structure of the Sikkim Himalayas (NE India) using magnetotelluric studies. Phys Earth Planet Int 173:171–176. doi:10.1016/j.pepi.2008.10.011

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160:EGM2008. Presented to EGU-2008, Vienna, Austria, April 2008

  • Rai SS, Priestley K, Gaur VK, Mitra S, Singh MP, Searle M (2006) Configuration of the Indian moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33. doi:10.1029/2006GL026076

  • Raiverman V (2000) Foreland Sedimentation in Himalayan Tectonic Regime: a relook at the orogenic processes. Bishen Singh Mahendra Pal Singh, Dehradun 378

    Google Scholar 

  • Rajendran CP, Rajendran K (2005) The status of central seismic gap: a perspective based on the spatial and temporal aspects of the large Himalayan earthquake. Tectonophys 395:19–39

    Google Scholar 

  • Rao MBR (1973) The subsurface geology of the Indo-Gangetic plains. J Geol Soc India 14:217–242

    Google Scholar 

  • Richardson RM (1992) Ridge forces, absolute plate motions, and the intraplate stress field. J Geophys Res 97:11739–11749

    Google Scholar 

  • Robert X, Vander Beek P, Braun J, Perry C, Dubille M, Mugnier JL (2009) Assessing Quaternary reactivation of the Main Central thrust zone (central Nepal Himalaya): new thermochronologic data and numerical modelling. Geology 37(8):731–734

    Google Scholar 

  • Sanker D, Kapur N, Singh B (2002) Thrust-wedge mechanics and coeval development of normal and reverse faults in the himalayas. J Geol Soc 137:1–34

    Google Scholar 

  • Sassi W, Faure JL (1997) Role of fault and layer interfaces on the spatial variation of stress regimes in basins: inferences from numerical modelling. Tectonophys 266:101–119

    Google Scholar 

  • Sastri VV, Bhandari LL, Raju ATR, Datta AK (1971) Tectonics framework and subsurface stratigraphy of the Ganga basin. J Geol Soc India 12:232–233

    Google Scholar 

  • Schärer U, Xu RH, Allèrgre CJ (1984) U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth Planet Sci Lett 69:311–320

    Google Scholar 

  • Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11:925–943

    Google Scholar 

  • Schelling D, Arita K (1991) Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal, Himalaya. Tectonics 10:851–862

    Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R, Wu F (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdongs L, Xuchangs X, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Bull Geol Soc Am 98:678–701

    Google Scholar 

  • Seeber L, Armbruster J (1981) Great detachment earthquakes along the Himalayan arc and long-term forecasting. In: Simpson DW, Richards PG (eds) Earthquake Prediction. An international review, Am Geophys Univ, Maurice Ewing Series 4, pp 215–242

  • Shearer PM (1999) Introduction to seismology. Cambridge University Press, Cambridge

    Google Scholar 

  • Singh RP, Li Q, Nyland E (1990) Lithospheric deformation beneath the Himalayan region. Phys Earth Planet Int 61:291–296

    Google Scholar 

  • Singh SC, Carton H, Tapponnier P, Hananto ND, Chauhan APS, Hartoyo D, Bayly M, Moeljopranoto S, Bunting T, Christie P, Lubis H, Martin J (2008) Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nat Geosci 1(11):777–781

    Google Scholar 

  • Spratt JE, Jones AG, Nelson KD, Unsworth MJ, INDEPTH MT Team (2005) Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations. Phys Earth Planet Int 150:227–237

    Google Scholar 

  • Tandon AN (1972) Anantnag earthquakes (Feb–April, 1967). Ind J Meteorol Geophys 23:491

    Google Scholar 

  • Thiede RC, Bookhagena B, Arrow Smith JR, Sobela ER, Streckera MR (2004) Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet Sci Lett 222:791–806

    Google Scholar 

  • Timosenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill Book Company, London, pp 1–567

    Google Scholar 

  • Tiwari VM, Vyghreswara R, Mishra DC, Singh B (2006) Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data. Earth Planet Sci Lett 247:61–69

    Google Scholar 

  • Tiwari VM, Singh B, Arora K, Kumar S (2010) The potential of satellite gravity and gravity gradiometry in deciphering structural setting of the Himalayan Collision Zone. Curr Sci 99(12):1795–1800

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics applications of continuum physics to geological problems. Wiley, New York, p 450

    Google Scholar 

  • Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE, INDEPTH MT Team (2005) Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data. Nature 438:78–81

    Google Scholar 

  • Valdiya KS (1976) Himalaya transverse faults and their parallelism with subsurface structures of North Indian planes. Tectonophys 32:353–386

    Google Scholar 

  • Valdiya KS (1980) Geology of kumaun lesser himalaya. Wadia Institute of Himalayan Geology, p 291

  • Valdiya KS (1988) Tectonics and evolution of the central sector of the Himalaya. Philos Trans R Soc Lond A Math Phys Sci 326:151–174

    Google Scholar 

  • Valdiya KS (1989) Trans-Himadri intracrustal fault and basement upwards south of the Indus–Tsangpo suture zone. In: Malinconico Jr LL, Lillie RJ (eds) Tectonics of the Western Himalaya. Special paper, Geol Soc Am 232:153–168

  • Vanbrabant Y, Jongmans D, Hassani R, Bellono D (1999) An Application of Two-dimensional finite-element modeling for studying the deformation of the Variscan Fold-and-thrust belt (Belgium). Tectonophys 309:141–159

    Google Scholar 

  • Vergne J, Cattin R, Avouac JP (2001) On the use of dislocations to model interseismic strain and stress build-up at the intracontinental thrust faults. Geophys J Int 47:115–162

    Google Scholar 

  • Verma RK, Kumar GVRK (1987) Seismicity and the nature of plate movement along the Himalayan arc, Northeast India and Arakan-Yoma: a review. Tectonophys 134:153–175

    Google Scholar 

  • Wang C, Shi Y (1982) On the tectonics of the Himalaya and Tibet plateau. J Geophys Res 87:2949–2957

    Google Scholar 

  • Watts AB, Burov EB (2003) Lithospheric strength and its relationship to the elastic and seismogenic layer thicknesses. Earth Planet Sci Lett 213:113–131

    Google Scholar 

  • Webring M (1985) SAKI: A Fortran program for generalized linear inversion of gravity and magnetic profiles. Open-file report, U.S. Geological Survey, pp 85–122

  • Willet SD, Beaumont C (1994) Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature 369:642–645. doi:10.1038/369642a0

    Google Scholar 

  • Willett SD, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–374

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Google Scholar 

  • Zhang Z, Klemperer S (2010) Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data. Geophys J Int 181:1247–1260

    Google Scholar 

  • Zhao W, Nelson K, Team PI (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 366:557–559

    Google Scholar 

  • Zienkiewicz OC, Taylor R (1989) The finite element method, basic formulation and linear problems, vol 1. McGraw-Hill, London 648

    Google Scholar 

  • Zienkiewicz OC, Taylor R (1991) The finite element method, solid and fluid mechanics dynamics and non-linearity, vol 2. McGraw-Hill, London 807

    Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Director, Indian School of Mines, Dhanbad, for partial financial support to carry out the present work. Partial financial benefit from the Ministry of Earth Sciences, Govt. of India, New Delhi, India, is also thankfully acknowledged. First author is also thankful to Gautam Kumar Nayak, Scientist, National Geophysical Research Institute, Hyderabad, India, for his critical suggestions during gravity modelling. The authors are thankful to Gautam Gupta and other anonymous reviewer for excellent suggestion, which has improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosanta K. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.A., Khan, P.K., Tiwari, V.M. et al. Gravity anomalies, flexure, and deformation of the converging Indian lithosphere in Nepal and Sikkim–Darjeeling Himalayas. Int J Earth Sci (Geol Rundsch) 103, 1681–1697 (2014). https://doi.org/10.1007/s00531-014-1039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1039-0

Keywords

Navigation