International Journal of Earth Sciences

, Volume 103, Issue 4, pp 1163–1173 | Cite as

The Little Ice Age signature and subsequent warming seen in borehole temperature logs versus solar forcing model

  • Jacek MajorowiczEmail author
  • Jan Šafanda
  • Rajmund Przybylak
Short note


The ‘low’ in the transient temperature versus depth borehole profiles around 120 m seen from deep temperature logs in the Canadian Prairies (southern Alberta–southern Saskatchewan), as well as in some of the European data, has been interpreted to be related to the Little Ice Age (LIA). Data point to the lowest ground surface and subsurface temperatures occurring in the very late eighteenth to nineteenth centuries. Inversion of these logs shows that surface temperature lows were followed by a recent warming period. Further, the synthetic profiles built on the basis of solar forcing history, stretching as far back as the beginning of the seventeenth century, suggest that the LIA signatures interpreted from the inversion of the borehole temperature logs would be difficult to be explained by known published models of past solar irradiation despite large range of assumed sensitivities for the couplings assumed, and that further forcing needs to be considered.


Surface processes Borehole temperatures Climatic warming Little Ice Age Solar irradiation 



The authors would like to thank Environment Canada and Walter Skinner for their support. First author’s special thanks go to Dr. William Gosnold of the University of North Dakota whose support and suggestion to look into solar forcing factor in case of repeated logging done by the author in the Canadian Prairies is a northern extension of work started in the Dakotas and Nebraska, USA. Completion of this work was made possible due to a visiting professorship grant awarded to the first author by the Nicolaus Copernicus University in Torun, Poland, and the HAI4 program of the Department of Physics University of Alberta, where the final drafts were written. Rajmund Przybylak’s work was supported by the Polish-Swiss research programme, as part of the project entitled The Climate of Northern Poland During the Last 1,000 Years: Constraining the Future with the Past (Climpol) as well as the NCN project DEC-2011/03/B/ST10/05007. We would like to thank reviewers Dr. Dmitri Demezhko of the Russian Academy of Sciences and Dr. Alan Jessop of the Geological Survey of Canada (emeritus scientist) for their very helpful comments.

Supplementary material

531_2014_1008_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (docx 28 kb)


  1. Baker DG, Ruschy DL (1993) The recent warming in eastern Minnesota shown by ground temperatures. Geophys Res Lett 20:371–374CrossRefGoogle Scholar
  2. Beck AE, Shen PY, Beltrami H, Mareshal J-C, Šafanda J, Sebagenzi MN, Vasseur G, Wang K (1992) A comparison of five different analyses in the interpretation of five borehole temperature data sets. Glob Planet Change 98:101–112CrossRefGoogle Scholar
  3. Bodri L, Čermak V (2007) Borehole climatology—a new method on how to reconstruct climate. Elsevier, AmsterdamGoogle Scholar
  4. Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20:415–429Google Scholar
  5. Bradley RS (1991) Pre-instrumental climate: how has climate varied during the past 500 years? In: Schlesinger M (ed) Greenhouse gas-induced climatic change. Elsevier, Amsterdam, pp 391–410Google Scholar
  6. Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376CrossRefGoogle Scholar
  7. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  8. Campbell C (1998) Late Holocene lake sedimentology and climate change in southern Alberta, Canada. Quat Res 49:96–101CrossRefGoogle Scholar
  9. Canadian Cryospheric Information Network (2006) Past variability of Canadian glaciers. Retrieved on 14 Feb 2006Google Scholar
  10. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New YorkGoogle Scholar
  11. Cermak V (1971) Underground temperature and inferred climatic temperature of the past millennium. Paleography Paleoeclimatology Paleoecol 10:1–19CrossRefGoogle Scholar
  12. Chapman DS, Bartlett MG, Harris RN (2004) Comment on “Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions” by ME Mann and G. Schmidt. Geophys Res Lett 31(7)
  13. Clow GD (1992) The extent of temporal smearing in surface-temperature histories derived from borehole temperature measurements. Glob Planet Change 6:81–86CrossRefGoogle Scholar
  14. Demezhko D, Kotlovanova D, Khachay Y (2012) Geothermal evidences of pre-industrial ground temperature changes in the Urals and Eastern Europe. EGU General Assembly 2012, held 22–27 April, 2012 in Vienna, Austria, p 7609Google Scholar
  15. Demezhko D Yu, Gornostaeva AA, Tarkhanov GV, Esipko OA (2013) 30,000 years of ground surface temperature and heat flux changes in Karelia reconstructed from borehole temperature data. Bull Geogr Phys Geogr Ser Versita Publ 6:7–25Google Scholar
  16. Deming D (1995) Climatic warming in North America: analysis of borehole temperatures. Science 268:1576–1577CrossRefGoogle Scholar
  17. Foukal P, Froehlich C, Sruit H, Wigley TML (2006) Variations in solar luminosity and their effect on Earth’s climate. Nature 443:161–166. doi: 10.1038/nature05072 CrossRefGoogle Scholar
  18. Gosnold WD, Todhunter PE, Dong X, Rundquist B, Majorowicz J, Blackwell DD (2004) A multidisciplinary approach to assessing the causal components of climate change. In: Transactions of the American geophysical union, spring meeting 2004, abstract #GC41A-01 2004Google Scholar
  19. Gosnold W, Majorowicz J, Todhunter P, Rundquist B, Dong X, Popham J, Wood S, Heinle S, Robinson R (2006) Linking borehole temperatures to air temperatures. Geophysical Research Abstracts 8, 08138, 2006, SRef-ID: 1607-7962/gra/EGU06-A-08138© European Geosciences Union 2006Google Scholar
  20. Gray LJ, Beer J, Geller M, Haigh J, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Marsh N, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophy 48: RG4001. doi: 10.1029/2009RG000282
  21. Grove J (1988) The Little Ice Age. Methuen & Co, LondonCrossRefGoogle Scholar
  22. Herschel W (1801) Observations tending to investigate the nature of the Sun, in order to find the causes or symptoms of its variable of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philos Trans R Soc Lond 91:265–318CrossRefGoogle Scholar
  23. Hodell DA, Brenner M, Curtis JH, Guilderson T (2001) Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367–1370CrossRefGoogle Scholar
  24. Huang S, Pollack HN, Shen PY (2000) Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403:756–758CrossRefGoogle Scholar
  25. IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  26. Jessop AM (1990) Thermal geophysics. In: Developments in solid earth, Geophysics 17. Elsevier 306 pGoogle Scholar
  27. Jones PD, Briffa KR (2001) The “Little Ice Age”: local and global perspectives. Clim Change 48:5–8CrossRefGoogle Scholar
  28. Kotlovanova AA, Demezhko DY (2011) Recovery from the little ice age: geothermal evidences. In: XII Ural youth scientific school on geophysics, Russia, 2011, pp 119–122 (in Russian)Google Scholar
  29. Kristjánsson JE, Kristiansen J (2000) Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J Geophys Res 105(D9):11851–11863. doi: 10.1029/2000JD900029 CrossRefGoogle Scholar
  30. Kulmala M, Riipinen I, Nieminen T, Hukkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaβ-Dϋlmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898. doi: 10.5194/acp-10-1885-2010 CrossRefGoogle Scholar
  31. Lachenbruch AH (1994) Permafrost, the active layer and changing climate. US Geological Survey. Open-File Report 94-694 Menlo Park, CA, 43 ppGoogle Scholar
  32. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in Alaska. Science 234:689–696CrossRefGoogle Scholar
  33. Lachenbruch AH, Sass JH, Marshall BV, Moses TH (1982) Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska. J Geophys Res Solid Earth (1978–2012) 87(B11):9301–9316Google Scholar
  34. Lachenbruch AH, Cladouhos TT, Saltus RW (1988)Permafrost temperature and the changing climate. In: 5th International permafrost conference proceedings. Permafrost 3 Tapir Publishers, Trondheim, Norway, pp 9–17Google Scholar
  35. Lamb HH (1965) The early medieval warm epoch and its sequel. Paleography Paleoeclimatology Paleoecol 1:13–37CrossRefGoogle Scholar
  36. Lean J (2006) Solar spectral irradiance: users applications models
  37. Lean J (2010) Cycles and trends in solar irradiance and climate. Wiley Interdiscip Rev Clim Change 1(1):111–122. doi: 10.1002/wcc.018 CrossRefGoogle Scholar
  38. Lean J, Rind D (1998) Climate forcing by changing solar radiation. J Clim 11:3069–3094CrossRefGoogle Scholar
  39. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L1870. doi: 10.1029/2008GL034864 Google Scholar
  40. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198CrossRefGoogle Scholar
  41. Lockwood M (2012) Solar influence on global and regional climates. Surv Geophys 33:503–534. doi: 10.1007/s10712-012-9181-3 CrossRefGoogle Scholar
  42. Lorenc H (2000) Studia nad 220-letnią (1779–1998) serią temperatury powietrza w Warszawie oraz ocena jej wiekowych tendencji. Materiały Badawcze, Seria Meteorologia 31:3–104Google Scholar
  43. Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dyn 24:131–144CrossRefGoogle Scholar
  44. Luckman BH, Briffa KR, Jones PD, Schwaingruber FH (1997) Tree ring based reconstruction of summer temperatures at the Columbia Icefield. Alberta, Canada, AD 1073–1983. Holocene 7:375–389CrossRefGoogle Scholar
  45. Magny M (1993) Solar influences on Holocene climatic changes. Quat Res 40:1–9CrossRefGoogle Scholar
  46. Majorowicz J (2010) The climate of Europe in recent centuries in the context of the climate of mid to high latitude Northern Hemisphere from borehole temperature logs. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The Polish climate in the European context: an historical overview. Springer, New York, pp 103–128CrossRefGoogle Scholar
  47. Majorowicz JA, Šafanda J (2001) Composite surface temperature history from simultaneous inversion of borehole temperatures in western Canadian plains. Glob Planet Change 29(3–4):231–239CrossRefGoogle Scholar
  48. Majorowicz J, Šafanda J, Harris RN, Skinner WR (1999) Large ground surface temperature changes of the last three centuries inferred from borehole temperatures in the Southern Canadian Prairies, Saskatchewan. Glob Planet Change 20:227–241CrossRefGoogle Scholar
  49. Majorowicz JA, Šafanda J, Skinner WR (2002) East to west retardation in the onset of the recent warming across Canada inferred from inversions of temperature logs. J Geophys Res (Solid Earth) 107:B10, ETG 6-1, Cite ID 2227. doi: 10.1029/2001JB000519
  50. Majorowicz J, Skinner W, Šafanda J (2004a) Past surface temperature changes as derived from continental temperature logs—Canadian and some global examples of application of a new tool in climate change studies. Adv Geophys 47:113–174CrossRefGoogle Scholar
  51. Majorowicz JA, Šafanda J, Przybylak R, Wójcik G (2004b) Ground surface temperature history in Poland in the 16th–20th century derived from the inversion of geothermal profiles. Pure Appl Geophys 161:351–363CrossRefGoogle Scholar
  52. Majorowicz J, Skinner W, Šafanda J (2012) Western Canadian Sedimentary Basin temperature–depth transients from repeated well logs: evidence of recent decade subsurface heat gain due to climatic warming. IOP J Geophys Eng 9:127 (
  53. Mann M (2002) Little Ice Age. In: MacCracken MC, Perry JS (eds) The Earth system: physical and chemical dimensions of global environmental change. In: Munn T (ed) Encyclopaedia of global environmental change, pp 504–509Google Scholar
  54. Marsh N, Svensmark H (2000) Cosmic rays, clouds, and climate. Space Sci Rev 94:215–230. doi: 10.1023/A:1026723423896 CrossRefGoogle Scholar
  55. Marsh N, Svensmark H (2003) Galactic cosmic rays and El Nino Southern Oscillation trends in international satellite cloud climatology project D2 low-cloud properties. J Geophys Res 108(D6):4195. doi: 10.1029/2001JD001264 CrossRefGoogle Scholar
  56. Marsh N, Svensmark H (2004) Comment on ‘Solar influences on cosmic rays and cloud formation: a reassessment’ by Bomin Sun and Raymond S. Bradley. J Geophy Res 109:D14205. doi: 10.1029/2003JD004063 CrossRefGoogle Scholar
  57. Mikami T (ed) (1992) Proceedings of the international symposium on the Little Ice Age climate. Tokyo Metropolitan University, Tokyo, 342 ppGoogle Scholar
  58. Miller GH, Geirsdottir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordason T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi: 10.1029/2011GL050168 Google Scholar
  59. Ogilvie AEJ, Jónsson T (2001) “Little Ice Age” research: a perspective from Iceland. Clim Change 48:9–52CrossRefGoogle Scholar
  60. Pfister C, Schwarz-Zanetti G, Wegmann M (1996) Winter severity in Europe: the fourteenth century. Clim Change 34:91–108CrossRefGoogle Scholar
  61. Pfister C, Luterbacher J, Schwarz-Zanetti G, Wegmann M (1998) Winter air temperature variations in western Europe during the early and High Middle Ages (AD 750–1300). Holocene 8:535–552CrossRefGoogle Scholar
  62. Przybylak R (2003) The climate of the arctic. Kluwer, DordrechtCrossRefGoogle Scholar
  63. Przybylak R (2010) The climate of Poland in recent centuries: a synthesis of current knowledge: instrumental observations. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The Polish climate in the European context: an historical overview. Springer, New York, pp 129–166CrossRefGoogle Scholar
  64. Przybylak R, Majorowicz J, Wojcik G, Zielski A, Chorazyczewski W, Marciniak K, Nowosad W, Olinski P, Syta K (2005) Temperature changes in Poland from the 16th to the 20th centuries. Int J Climatol 25:773–791CrossRefGoogle Scholar
  65. Rind D, Shindell D, Perlwitz J, Lerner J, Lonergan P, Lean J, McLinden C (2004) The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J Clim 17(5):906–929CrossRefGoogle Scholar
  66. Robock A (1979) The “Little Ice Age”: northern Hemisphere average observations and model calculations. Science 206:1402–1404CrossRefGoogle Scholar
  67. Šafanda J, Majorowicz J (2010) Geophysical Data. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The Polish climate in the European context: an historical overview. Springer, New York, pp 220–226Google Scholar
  68. Šafanda J, Rajver D (2001) Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia. Glob Planet Change 29:241–257CrossRefGoogle Scholar
  69. Sauchyn DJ, Skinner WR (2001) A proxy record of drought severity for the Southwestern Canadian Plains. Revue Canadienne des ressourceshydriques 26:253–272Google Scholar
  70. Scafetta N, Willson R (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi: 10.1029/2008GL036307 Google Scholar
  71. Shen P-Y, Beck AE (1991) Least squares inversion of borehole temperature measurements in functional space. J Geophys Res 96:19965–19979CrossRefGoogle Scholar
  72. Shen PY, Pollack HN, Huang S, Wang K (1995) Effects of subsurface heterogeneity on the inference of climate change from borehole temperature data: model studies and field examples from Canada. J Geophys Res 100(B4):6383–6396CrossRefGoogle Scholar
  73. Shen PY, Pollack H, Huang S (1996) Inference of ground surface temperature history from borehole temperature data: a comparison of two inverse methods: global Planetary. Change 14:49–57Google Scholar
  74. Shindell DT, Schmidt GA, Miller RL, Rind D (2001a) Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J Geophys Res 106:7193–7210. doi: 10.1029/2000JD900547 CrossRefGoogle Scholar
  75. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001b) Solar forcing of regional climate change during the maunder minimum. Science 294(5549):2149–2152. doi: 10.1126/science.1064363 CrossRefGoogle Scholar
  76. Stuiver M, Braziunas TF (1993) Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3:289–305CrossRefGoogle Scholar
  77. Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107(D14):4211. doi: 10.1029/2001jd000560 CrossRefGoogle Scholar
  78. Sun B, Bradley RS (2004) Reply to comment by N.D.Marsh and H. Svensmark on “Solar influences on cosmic rays and cloud formation: a reassessment”. J Geophys Res 109:D14206. doi: 10.1029/2003JD004479 CrossRefGoogle Scholar
  79. Svensmark H (2007) Cosmoclimatology: a new theory emerges. Astron Geophys 48:118–124. doi: 10.1111/j.1468-4004.2007.48118.x Google Scholar
  80. Svensmark H, Friis-Christensen E (1997) Variations of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atmos Solar Terr Phys 59:1225–1232. doi: 10.1016/S1364-6826(97)00001-1 CrossRefGoogle Scholar
  81. von Storch H, Zorita E, Jones JM, Dimitriev Y, González-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682CrossRefGoogle Scholar
  82. Wood K, Overland JE (2003) Accounts from 19th-century Canadian Arctic Explorers’ Logs reflect present climate conditions. EOS 84: 410 and 412Google Scholar
  83. Zhang X, Vincent LA, Hogg DW, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429CrossRefGoogle Scholar
  84. Zielinski GA (2000) Use of paleo-records in determining variability within the volcanism–climate system. Quat Rev 19:417–438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jacek Majorowicz
    • 1
    Email author
  • Jan Šafanda
    • 2
  • Rajmund Przybylak
    • 3
  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada
  2. 2.Institute of GeophysicsCzech Academy of SciencesPragueCzech Republic
  3. 3.Department of Meteorology and ClimatologyNicolaus Copernicus UniversityToruńPoland

Personalised recommendations