Skip to main content

Advertisement

Log in

SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In 1996, after 150 years of relative calm, Turrialba Volcano was reawakening. A visible plume and serious damage to surrounding vegetation due to acid rain are the most obvious signals. As part of the Network for Observation of Volcanic and Atmospheric Change project, four gas-monitoring stations were initially installed on the west flank of the volcano with the purpose of measuring sulphur dioxide emissions during this period of increased activity using the scanning-differential optical absorption spectroscopy technique. We present here the results of semicontinuous gas flux measurements over a period of 5 years (from 2008 to 2012), providing a novel data set that documents a relatively rapid increase in SO2 fluxes from around 350 t day−1 to around 4,000 t day−1 leading up to an eruptive period, followed by a gradual return to the former baseline values. Gas flux data were also compared with seismic data for selected periods of interest, providing insights into the link between degassing and seismicity. The most important result from this comparison is the identification of an inflexion point in the gas emissions followed by a clearly increasing trend in seismic activity, distinguishable 6 months prior to a phreatic eruptive event that occurred on 5 January 2010. This signal can be interpreted as a possible indicator of future eruptive events. Monitoring of SO2 thus complements seismic monitoring as a forecasting tool for eruptive events. Such monitoring is critical considering the proximity of Turrialba to the Central Valley, an area inhabited by more than 50 % of Costa Rica’s population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arciniega-Ceballos A, Chouet B, Dawson P, Asch G (2008) Broadband seismic measurements of degassing activity associated with lava effusion at Popocatépetl Volcano, Mexico. J Volcanol Geoth Res 170(1–2):12–23

    Article  Google Scholar 

  • Arellano SR, Hall M, Samaniego P, Le Pennec JL, Ruiz A, Molina I, Yepes H (2008) Degassing patterns of Tungurahua volcano (Ecuador) during the 1999–2006 eruptive period, inferred from remote spectroscopic measurements of SO2 emissions. J Volcanol Geoth Res 176(1):151–162

    Article  Google Scholar 

  • Barboza V, Fernandez E, Duarte E, Sáenz W, Martínez M, Moreno N, Marino T, Van der Laat R, Hernández E, Malavassi E, Valdés J (2003) Changes in the activity of Turrialba Volcano: seismicity, geochemistry and deformation. 8th IAVCEI Gas Workshop, Nicaragua and Costa Rica

  • Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE (2007) High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J Volcanol Geoth Res 168(1–4):68–92

    Article  Google Scholar 

  • Bredemeyer S, Hansteen TH, Garofalo K, Mora Stock C, Rabbel W, Gil Cruz F (2011) Remote sensing of thermal emission and degassing at Villarrica Volcano, Chile. Paper presented at the AGU Fall Meeting 2011, Abstract ID: V44C-02, San Francisco, California, USA

  • Brooks B-G (2011) Earth Scientist’s guide to discrete-time power spectrum analysis. inTech (Fourier transforms—new analytical approaches and FTIR strategies). doi:10.5772/16113

  • Burton MR, Caltabiano T, Murè F, Salerno G, Randazzo D (2009) SO2 flux from Stromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J Volcanol Geoth Res 182(3–4):214–220. doi:10.1016/j.jvolgeores.2008.11.025

    Article  Google Scholar 

  • Campion R, Martinez-Cruz M, Lecocq T, Caudron C, Pacheco J, Pinardi G, Hermans C, Carn S, Bernard A (2012) Space- and ground-based measurements of sulphur dioxide emissions from Turrialba Volcano (Costa Rica). Bull Volcanol 74(7):1757–1770

    Article  Google Scholar 

  • Casadevall TJ (1981) The 1980 eruptions of Mount St. Helens, Washington. SO2 emission rates at Mount St. Helens from March 29 through December 1980. US Geol Surv Prof Pap 1250:193–200

    Google Scholar 

  • Casadevall T, Rose W, Gerlach T, Greenland LP, Ewert J, Wunderman R, Symonds R (1983) Gas emissions and the eruptions of Mount St. Helens through 1982. Science 221(4618):1383–1385

    Article  Google Scholar 

  • Chouet B (2003) Volcano seismology. Pure Appl Geophys 160(3–4):739–788

    Article  Google Scholar 

  • Christopher T, Edmonds M, Humphreys MCS, Herd RA (2010) Volcanic gas emissions from Soufrière Hills Volcano, Montserrat 1995–2009, with implications for mafic magma supply and degassing. Geophys Res Lett 37(19):L00E04. doi:10.1029/2009GL041325

    Article  Google Scholar 

  • Daag A, Tubianosa B, Newhall C, Tuñgol N, Javier D, Dolar M, De los Reyes P, Arboleda R, Martinez M, Regalado M (1996) Monitoring sulfur dioxide emission at Mount Pinatubo. Fire and mud: eruptions and Lahars of Mount Pinatubo Philippines Institute of Volcanology and Seismology, and University of Washington press, pp 409–414

  • Edmonds M, Herd RA, Galle B, Oppenheimer CM (2003) Automated, high time resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat. Bull Volcanol 65(8):578–586

    Article  Google Scholar 

  • Endo ET, Murray T (1991) Real-time seismic amplitude measurement (RSAM): a volcano monitoring and prediction tool. Bull Volcanol 53(7):533–545

    Article  Google Scholar 

  • Eyre TS, Bean CJ, De Barros L, O’Brien GS, Martini F, Lokmer I, Mora MM, Pacheco JF, Soto GJ (2013) Moment tensor inversion for the source location and mechanism of long period (LP) seismic events from 2009 at Turrialba volcano, Costa Rica. J Volcanol Geoth Res 258:215–223. doi:10.1016/j.jvolgeores.2013.04.016

    Article  Google Scholar 

  • Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano SR, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res 115(D5):D05304. doi:10.1029/2009jd011823

    Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39(1):321–356. doi:10.1146/annurev.fluid.39.050905.110207

    Article  Google Scholar 

  • Grutter M, Basaldud R, Rivera C, Harig R, Junkerman W, Caetano E, Delgado-Granados H (2008) SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques. Atmos Chem Phys 8(22):6655–6663

    Article  Google Scholar 

  • Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geoth Res 100(1–4):165–192. doi:10.1016/S0377-0273(00)00136-0

    Article  Google Scholar 

  • Hoff RM, Millan MM (1981) Remote SO2 mass flux measurements using COSPEC. J Air Pollut Control Assoc 31(4):381–384

    Article  Google Scholar 

  • James MR, Lane SJ, Chouet BA (2006) Gas slug ascent through changes in conduit diameter: laboratory insights into a volcano-seismic source process in low-viscosity magmas. Journal of Geophysical Research B: Solid Earth 111(5). doi:10.1029/2005jb003718

  • Johansson M (2009) Application of passive DOAS for studies of megacity air pollution and volcanic gas emissions. PhD thesis Chalmers University of Technology

  • Johansson M, Galle B, Zhang Y, Rivera C, Chen D, Wyser K (2009) The dual-beam mini-DOAS technique—measurements of volcanic gas emission, plume height and plume speed with a single instrument. Bull Volcanol 71(7):747–751. doi:10.1007/s00445-008-0260-8

    Article  Google Scholar 

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56(3):207–216. doi:10.1007/bf00279605

    Article  Google Scholar 

  • Kern C (2009) Spectroscopic measurements of volcanic gas emissions in the ultra-violet wavelength region. PhD thesis, Univ. of Heidelberg, Heidelberg, Germany

  • Kern C, Deutschmann T, Vogel L, Wöhrbach M, Wagner T, Platt U (2010) Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bull Volcanol 72(2):233–247

    Article  Google Scholar 

  • Kraus N (2004) DOASIS: DOAS intelligent system. Available from http://doasis.iup.uni-heidelberg.de

  • Lahr JC, Chouet BA, Stephens CD, Power JA, Page RA (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at redoubt volcano, Alaska. J Volcanol Geoth Res 62(1–4):137–151

    Article  Google Scholar 

  • Martini F, Tassi F, Vaselli O, Del Potro R, Martinez M, del Laat RV, Fernandez E (2010) Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence. J Volcanol Geoth Res 198(3–4):416–432

    Article  Google Scholar 

  • Moran S, Newhall C, Roman D (2011) Failed magmatic eruptions: late-stage cessation of magma ascent. Bull Volcanol 73(2):115–122. doi:10.1007/s00445-010-0444-x

    Article  Google Scholar 

  • Mori T, Mori T, Kazahaya K, Ohwada M, Hirabayashi J, Yoshikawa S (2006) Effect of UV scattering on SO2 emission rate measurements. Geophys Res Lett 33(L17315). doi:10.1029/2006GL026285

  • Nadeau PA, Palma JL, Waite GP (2011) Linking volcanic tremor, degassing, and eruption dynamics via SO2 imaging. Geophys Res Lett 38(L01304). doi:10.1029/2010GL045820

  • Ogiso M, Yomogida K (2012) Migration of tremor locations before the 2008 eruption of Meakandake Volcano, Hokkaido, Japan. J Volcanol Geoth Res 217–218:8–20

    Article  Google Scholar 

  • Olmos R, Barrancos J, Ivera CR, Barahona F, López DL, Henriquez B, Hernández A, Benitez E, Hernández PA, Pérez NM, Galle BO (2007) Anomalous emissions of SO2 during the recent eruption of Santa Ana volcano, El Salvador, Central America. Pure Appl Geophys 164(12):2489–2506

    Article  Google Scholar 

  • Palma JL, Calder ES, Basualto D, Blake S, Rothery DA (2008) Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J Geophys Res Solid Earth 113(B10):B10201. doi:10.1029/2008JB005577

    Article  Google Scholar 

  • Petersen T, Caplan-Auerbach J, McNutt SR (2006) Sustained long-period seismicity at Shishaldin Volcano, Alaska. J Volcanol Geoth Res 151(4):365–381

    Article  Google Scholar 

  • Platt U, Stutz J (2008) Differential optical absorption spectroscopy (DOAS), principle and applications. Springer, Heidelberg. doi:10.1007/978-3-540-75776-4

  • Reagan M, Duarte E, Soto GJ, Fernández E (2006) The eruptive history of Turrialba volcano, Costa Rica, and potential hazards from future eruptions. Volcan Hazards Central America 412:235

    Google Scholar 

  • Reagan M, Rowe M, Duarte E, Hernandez E (2011) Juvenile glass fragments in phreatic explosion debris from Turrialba Volcano, Costa Rica. Paper presented at the Goldschmidt Conference, Mineralogical Magazine, 75(3), Prague, 2011

  • Rivera C, Garcia JA, Galle B, Alonso L, Yan Z, Johansson M, Matabuena M, Gangoiti G (2009) Validation of optical remote sensing measurement strategies applied to industrial gas emissions. Int J Remote Sens 30(12):3191–3204. doi:10.1080/01431160802558808

    Article  Google Scholar 

  • Rowe CA, Aster RC, Kyle PR, Schlue JW, Dibble RR (1998) Broadband recording of Strombolian explosions and associated very-long-period seismic signals on Mount Erebus volcano, Ross Island, Antarctica. Geophys Res Lett 25(13):2297–2300

    Article  Google Scholar 

  • Salerno GG, Burton MR, Oppenheimer C, Caltabiano T, Randazzo D, Bruno N, Longo V (2009) Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: comparison with conventional traverses and uncertainties in flux retrieval. J Volcanol Geoth Res 183(1–2):76–83. doi:10.1016/j.jvolgeores.2009.02.013

    Article  Google Scholar 

  • Shaw H (1980) Fracture mechanism of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 201–264

  • Smithsonian-Institution (2012) http://www.volcano.si.edu/volcano.cfm?vn=345070

  • Soto G (1988) Estructuras volcano-tectónicas del Volcán Turrialba, Costa Rica, America Central. Actas Quinto Congreso Geológico Chileno- Santiago, 8–12 de Agosto de 1988 Tomo III:163–175

  • Stoiber RE, Williams SN, Malinconico LL (1980) Mount St. Helens, Washington, 1980 volcanic eruption: magmatic gas component during the first 16 days. Science 208(4449):1258–1259

    Article  Google Scholar 

  • Symonds R, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem 30(1):1–66

    Google Scholar 

  • Tait S, Jaupart C, Vergniolle S (1989) Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet Sci Lett 92(1):107–123

    Article  Google Scholar 

  • Tassi F, Vaselli O, Barboza V, Fernandez E, Duarte E (2004) Fluid geochemistry and seismic activity in the period of 1998–2002 at Turrialba Volcano (Costa Rica). Ann Geophys 47(4):1501–1511

    Google Scholar 

  • Vandaele AC, Simon PC, Guilmot JM, Carleer M, Colin R (1994) SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer. J Geophys Res 99(D12):25,599–525605

    Article  Google Scholar 

  • Vaselli O, Tassi F, Duarte E, Fernandez E, Poreda RJ, Huertas AD (2010) Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bull Volcanol 72(4):397–410

    Article  Google Scholar 

  • Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photochem Photobiol, A 143(1):1–9

    Article  Google Scholar 

  • Wassermann J (2012) Volcano Seismology. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2), vol 2. Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–77. doi:10.2312/GFZ.NMSOP-2_ch13

  • Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosyst 12(Q06003). doi:10.1029/2010GC003412

Download references

Acknowledgments

This work was supported by the Swedish International Development Agency (SIDA) and the European Union NOVAC project in coordination with OVSICORI-UNA. We want to thank the staff from OVSICORI for all their friendly support and in particular for the technical assistance provided by Daniel Rojas, Antonio Mata and Hairo Villalobos. We would like to thank the reviewers and the editor of this paper for their constructive comments. This is contribution number 252 to Sonderforschungsbereich 574 ‘Volatiles and Fluids in Subduction Zones’ at Kiel University, funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Conde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, V., Bredemeyer, S., Duarte, E. et al. SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012. Int J Earth Sci (Geol Rundsch) 103, 1983–1998 (2014). https://doi.org/10.1007/s00531-013-0958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0958-5

Keywords

Navigation