Skip to main content
Log in

The Yucatan, a Laurentian or Gondwanan fragment? Geophysical and palinspastic constraints

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Current reconstructions suggest that the Yucatan block has Gondwanan provenance and orient the Yucatan E–W in the Ouachita embayment where it overlaps southern Laurentia and Florida. Alternatively, if the Yucatan is oriented NE–SW, it fits neatly into the Ouachita embayment with minimal overlap. Furthermore, many of the V-shaped, magnetic anomalies in the Yucatan that are discordant in the E–W reconstruction can be traced across the Yucatan–Laurentian boundary in the NE–SW reconstruction: (a) NW-trending anomalies continue into southern Laurentia where they are associated with Cambrian mafic rocks in the southern Oklahoma and Reelfoot rifts and (b) NE-trending anomalies in the eastern Yucatan are parallel to those over Grenvillian rocks in the western Appalachians. Furthermore, Silurian plutons in the Maya Mountains of Belize that have no counterpart in Texas may be correlated with the Concord–Salisbury plutons in Carolinia, a terrane of Gondwanan provenance in the southern Appalachians. Nd isotopic data from the Chicxulub ejecta in the northern Yucatan block are similar to those in the Llano Grenvillian rocks and differ from those in Oaxaquia. These correlations suggest that much of the Yucatan is of Laurentian provenance and implies that the Laurentia–Gondwana suture crosses the Yucatan west of the Maya Mountains. In this scenario, the Ouachita embayment results from the formation of the Gulf of Mexico during the breakup of Pangea, rather than the Cambrian removal of the Argentine Cuyania terrane. Cambrian (515 Ma) paleomagnetic and faunal data are consistent with Cuyania forming either east of the Yucatan or off eastern Laurentia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Astini RA, Thomas WA (1999) Origin and evolution of the Precordillera terrane of western Argentina: a drifted Laurentian orogen. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana connections before Pangea, vol 336. Geological Society of America Special Paper, pp 1–20

  • Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107:253–273

    Article  Google Scholar 

  • Ayala RC, Bayona G et al (2012) The paleogene synorogenic succession in the northwestern Maracaibo block: tracking intraplate uplifts and changes in sediment delivery systems. J S Am Earth Sci 39:93–111

    Article  Google Scholar 

  • Benedetto JL (1998) Early Palaeozoic brachiopods and associated shelly faunas from western Gondwana: its bearing on the geodynamic history of the pre-Andean margin. In: Pankhurst RJ, Rapela CW (eds) The proto-Andean margin of Gondwana. Geol Soc Lond Spec Publ 142:57–83

  • Benedetto JL (2004) The allochthony of the Argentine Precordillera ten years later (1993–2003): a new paleobiogeographic test of the microcontinental model. Gondwana Res 7(4):1027–1039

    Article  Google Scholar 

  • Blum JD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Schuraytz BC, Sharpton VL (1993) Isotopic comparison of K/T boundary impact glass with melt rocks from the Chicxulub and Manson impact structures. Nature 364:325–327

    Article  Google Scholar 

  • Bornodaro O (2003) Review of the Cambrian stratigraphy of the Argentine Cuyania. Geologica Acta 1:11–21

    Google Scholar 

  • Buffler RT, Sawyer DS (1985) Distribution of crust and early history, Gulf of Mexico basin. Gulf Coast Assoc Geol Soc Trans 35:334–344

    Google Scholar 

  • Bullard EC, Everett JE, Smith AG (1965) The fit of the continents around the Atlantic: a symposium on continental drift. Philos Trans R Soc Lond Ser A 258:41–51

    Article  Google Scholar 

  • Carey SW (1958) Continental drift, a symposium, Hobart, pp 177–355

  • Cramer FH (1974) Early Paleozoic palynomorph provinces and paleoclimate. Soc Econ Palaeo Min Spec Publ 21:177–188

    Google Scholar 

  • Csontos R, van Arsdale R, Cox R, Waldron B (2008) Reelfoot rift and its impact on quaternary deformation in the central Mississippi River valley. Geosphere 4(1):145–158. doi:10.1130/GES00107.1

    Article  Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. GSA Bull 109:16–42

    Article  Google Scholar 

  • Dennis AJ (2007) Cat Square basin, Catskill clastic wedge: Silurian-Devonian orogenic events in the central Appalachians and the crystalline southern Appalachians. In: Sears JW, Harms TA, Evenchick CA (eds) Whence the Mountains? Inquiries into the evolution of orogenic systems: a volume in Honor of Raymond A. Price. GSA Spec Pap 433:313–329. doi:10.1130/2007.2433(15)

  • Dickinson WR, Lawton TF (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. GSA Bull 113:1142–1160. doi:10.1130/00167606(2001)113<1142:CTCAAF>2.0.CO;2

    Article  Google Scholar 

  • Ervin CP, McGinnis LD (1975) Reelfoot rift: reactivated precursor to the Mississippi embayment. GSA Bull 86:1287–1295. doi:10.1130/0016-7606(1975)86<1287:RRRPTT>2.0.CO;2

    Article  Google Scholar 

  • Fritz WH, Yochelson EL (1988) The status of Salterella as a Lower Cambrian index fossil. Can J Earth Sci 25:403–416

    Article  Google Scholar 

  • Hanson RE, Puckett RE Jr et al (2011) Voluminous A-type rhyolites within a major, largely buried Cambrian rift zone in southern Oklahoma. GSA Abstr Progr 43(5):651

    Google Scholar 

  • Hatcher RD (2005) Non-survey, non-digital completed geologic maps in file drawers and theses: how can they be transformed into useful available digital geo-spatial data? USGS Open File 2005-1428

  • Hatcher RD Jr, Bream BR, Miller CF, Eckhert JO Jr, Fullagar PD, Carrigan CW (2004) Paleozoic structure of internal massifs, southern Appalachian Blue Ridge, incorporating new geochronologic, Nd and Sr isotopic, and geochemical data. In: Tollo RP, Corriveau L, McLelland J, Batholomew MJ (eds) Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir 197:525–547

  • Hibbard J, van Staal C, Rankin D, Williams H (2006) Geology, Lithotectonic Map of the Appalachian Orogen (South), Canada-United States of America. Geological Survey of Canada, Map 02096A, scale 1:1500000

  • Hibbard J, van Stall C, Rankin D (2010) Comparative analysis of the geological evolution of the northern and southern Appalachian orogen: late Ordovician–Permian. In: Tollo RP (ed) From Rodinia to Pangea: the lithotectonic record of the Appalachian region, vol 206. Geological Society of America Memoir, pp 51–69

  • James KH (2005) A simple synthesis of Caribbean geology. Transactions of the 16th Caribbean Geological conference, Barbados. Caribb J Earth Sci 39(2005):69–82

    Google Scholar 

  • James KH (2013) Caribbean geology: extended and subsided continental crust sharing history with eastern North America, the Gulf of Mexico, the Yucatan Basin, and northern South America. Geosci Can 40(1). doi:10.12789/geocanj.2013.40.001

  • Kamo SL, Krogh TE (1995) Chicxulub crater source for shocked zircon crystals from the Cretaceous–Tertiary boundary layer, Saskatchewan: evidence from new U–Pb data. Geology 23:281–284

    Article  Google Scholar 

  • Keppie DF (2012) Derivation of the Chortis and Chiapas blocks from the western Gulf of Mexico in the latest Cretaceous–Cenozoic: the Pirate mode. Int Geol Rev l 54:765–775

    Article  Google Scholar 

  • Keppie, DF (2013) The rationale and essential elements for the new Pirate model of Caribbean tectonics. Geosci Can 40(1). doi:10.12789/geocanj.2013.40.002

  • Keppie DF, Keppie JD (2012) An alternative Pangea reconstruction for Middle America with the Chortis Block in the Gulf of Mexico: tectonic implications. Int Geol Rev 54:1685–1696. doi:10.1080/00206814.2012.676361

    Article  Google Scholar 

  • Keppie JD, Ortega-Gutierrez F (2009) 1.3–0.9 Ga Oaxaquia (Mexico): remnant of an arc/backarc on the northern margin of Amazonia. J S Am Earth Sci 29:21–27. doi:10.1016/j.jsames.2009.07.001

    Article  Google Scholar 

  • Keppie JD, Norman M, Dostal J, Urrutia-Fucagauchi J, Grajales-Nishimura M (2010) Study of melt and a clast of 546 Ma magmatic arc rocks in the 65 Ma Chicxulub bolide breccia, northern Maya block, Mexico: western limit of Ediacaran arc peripheral to northern Gondwana. Int Geol Rev 53. doi:10.1080/00206810903545527

  • Keppie JD, Murphy JB, Nance RD, Dostal J (2012) Mesoproterozoic Oaxaquia-type basement in peri-Gondwanan terranes of Mexico, the Appalachians and Europe: TDM age constraints on extent and significance. Int Geol Rev 54(3):313–324. doi:10.1080/00206814.2010.543783

    Article  Google Scholar 

  • Kettrup B, Deutsch A, Ostermann M, Agrinier P (2000) Chicxulub impactites: Geochemical clues to the precursor rocks. Meteorites Planet Sci 35:1229–1238

    Article  Google Scholar 

  • Krogh TE, Kamo SL, Sharpton B, Marin L, Hildebrand AR (1993) U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366:232–236

    Article  Google Scholar 

  • Labails C, Olivet J, Aslanian D, Roest W (2010) An alternative early opening scenario for the Central Atlantic Ocean. EPS Lett 279:355–368

    Article  Google Scholar 

  • Lochman-Balk C, Wilson JL (1958) Cambrian biostratigraphy in North America. J Paleontol 32(2):312–350

    Google Scholar 

  • Martens U, Weber B, Valencia V (2010) U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya Block, Central America: its affinity with peri-Gondwanan terranes. GSA Bull 122:815–829

    Article  Google Scholar 

  • Mosher S, Levine JSF, Carlson WD (2008) Mesoproterozoic plate tectonics: a collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas. Geology 36:55–58. doi:10.1130/G24049A.1

    Article  Google Scholar 

  • Navarro-Santillan D, Sour-Tovar F, Centeno-Garcia E (2002) Lower Mississippian (Osagean) brachiopods from the Santiago Formation, Oaxaca, Mexico: stratigraphic and tectonic implications. J S Am Earth Sci 15:326–327

    Article  Google Scholar 

  • Peralta SH, Heredia S (2005) Depósitos de olistostroma del Devónico (inferior?-medio?), Formación Los Sombreros, en la quebrada de San Isidro, Cuyania de Mendoza, Argentina. XVI Congreso Geológico Argentino, La Plata, Actas 4:326–331

    Google Scholar 

  • Pindell JL, Dewey JF (1982) Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1:179–211. doi:10.1029/TC001i002p00179

    Article  Google Scholar 

  • Pindell JL, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South American in a mantle reference frame: an update. In James KH, Lorente MA, Pindell J L (eds) The origin and evolution of the Caribbean plate. Geol Soc Lond Spec Publ 328:1–55. doi:10.1144/SP328

  • Rapalini AE (2012) Paleomagnetic evidence for the origin of the Argentine Precordillera, fifteen years later: what is new, what has changed, what is still valid? LatinMag Lett 2(1):1–20, LL12-0102Rv

    Google Scholar 

  • Rapalini AE, Astini RA (1998) Paleomagnetic confirmation of the Laurentian orogen of the Argentine Precordillera. Earth Planet Sci Lett 155:1–14

    Article  Google Scholar 

  • Resser CE (1938) Cambrian system (restricted) of the Southern Appalachians. Geological Society of American Special Paper 15, 140 pp

  • Ross MI, Scotese CE (1988) A hierarchical model of the Gulf of Mexico and Caribbean region. Tectonophysics 155:139–168

    Article  Google Scholar 

  • Ruiz J, Tosdal RM, Restrepo PA, Marillo-Muñeton G (1999) Pb isotope evidence for Colombia-southern México connections in the Proterozoic. In: Ramos VA, Keppie JD (eds) Laurentia–Gondwana connections before Pangea. GSA Spec Pap 336:183–198

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411. doi:10.1029/2008JB006008

    Google Scholar 

  • Sedlock RL, Ortega-Gutiérrez F, Speed RC (1993) Tectonostratigraphic terranes and tectonic evolution of Mexico. GSA Special Paper 278, 153 pp

  • Seton M, Müller RD et al (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270

    Article  Google Scholar 

  • Steiner MB (2005) Pangean reconstruction of the Yucatan Block: its Permian, Triassic, and Jurassic geologic and tectonic history. In: Anderson TH, Nourse JA, McKee JW, Steiner MB (eds) The Mojave–Sonora megashear hypothesis: development, assessment, and alternatives, vol 393. Geological Society of America Special Paper, Boulder, Colorado, pp 457–480. doi:10.1130/2005.2393(17)

  • Steiner MB, Walker JD (1996) Late Silurian U–Pb ages from the Yucatan Block. J Geophys Res 101:17727–17735

    Article  Google Scholar 

  • Steltenpohl M, Mueller P, Heatherington A, Hanley T (2008) Gondwanan/Peri-Gondwanan origin for the Uchee terrane, Alabama and West Georgia: Carolina zone or Suwannee terrane (?) and its suture with Grenvillian basement of the Pine Mountain window. Geosphere 2:131–144

    Article  Google Scholar 

  • Thomas AT (2011) The Iapetan rifted margin of southern Laurentia. Geosphere 7(1):97–120. doi:10.1130/GES00574.1

    Google Scholar 

  • Thomas WA, Astini RA (1996) The Argentine Cuyania: a traveler from the Ouachita embayment of North American Laurentia. Science 273:752–757

    Article  Google Scholar 

  • Thomas WA, Astini RA (1999) Simple-shear conjugate rift margins of the Argentine Precordillera and the Ouchita embayment of Laurentia. GSA Bull 111:1069–1079

    Article  Google Scholar 

  • Thomas WA, Astini RA (2003) Ordovician accretion of the Argentine Cuyania terrane to Gondwana: a review. J S Am Earth Sci 16:67–79

    Article  Google Scholar 

  • Torsvik T, Steinberger B, Cocks L, Burke K (2008) Longitude: linking Earth’s ancient surface to its deep interior. EPS Lett 276:273–282

    Article  Google Scholar 

  • Vaccari NE (1994) Las faunas de trilobites de las sucesiones carbonáticas del Cámbrico y Ordovícico temprano de la Precordillera Septentrional Argentina. Doctoral thesis. Universidad Nacional de Córdoba, Argentina, 271 pp

  • Vera-Sanchez P (2000) Caracterizacion geoquimica de las unidades basales del bloque de Yucatan y su afinidad con unidades similares en el Golfo de México. MSc thesis, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, 105 pp

  • Weber B, Hecht L (2003) Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block: the Guichicovi complex, Oaxaca, southern Mexico. Precambrian Res 124:41–67

    Article  Google Scholar 

  • Weber B, Köhler H (1999) Sm/Nd, Rb/Sr, and U–Pb geochronology of a Grenville terrane in southern Mexico: origin and geologic history of the Guichicovi complex. Precambrian Res 96:245–262

    Article  Google Scholar 

  • Weber B, Cameron KL, Osorio M, Schaaf P (2005) A late Permian tectonothermal event affected former Grenville crust in the southern Maya terrane: U–Pb zircon ages from the Chiapas massif, SE Mexico. Int Geol Rev 47:509–529

    Article  Google Scholar 

  • Weber B, Schaaf P, Valencia VA, Iriondo A, Ortega-Gutiérrez F (2006) Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea. Rev Mex Cienc Geol 23(3):262–276

    Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:441

    Article  Google Scholar 

  • Fisher CM, Loewy SL et al (2010) Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis. GSA Bull 122(10):1646–1659. doi:10.1130/B30116.1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Jim Hibbard and Victor Ramos for their constructive reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fraser Keppie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keppie, D.F., Keppie, J.D. The Yucatan, a Laurentian or Gondwanan fragment? Geophysical and palinspastic constraints. Int J Earth Sci (Geol Rundsch) 103, 1501–1512 (2014). https://doi.org/10.1007/s00531-013-0953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0953-x

Keywords

Navigation