Skip to main content
Log in

Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Oaxacan Complex is the largest exposure of Grenvillian-age rocks in Mexico, constituting the backbone of the Oaxaquia microcontinent. Whereas the main rock-forming events were previously established at 1,150–1,200 Ma (charnockite–syenite–gabbros), 1,020 Ma (AMCG suite), 990 Ma (granulite-facies metamorphism), and ca. 970 Ma post-tectonic pegmatites, no data are yet available to establish provenance links with other Grenville-age terranes. In this work, we studied detrital zircons belonging to 12 samples, all metamorphosed under granulite facies but variably affected by retrogression. Laser ablation inductively coupled plasma mass spectrometry U–Pb geochronology was employed on selected zircons to determine their crystallization age and geochemistry. The results of the analysis of about 100 crystals per sample show that the studied zircons range between ca. 940 and 1,400 Ma, with only three samples having zircons between 1,400 and 1,600 Ma, and only one showing older zircons up to ca. 1,775 Ma. Whereas some of the slightly discordant (1–5 %) zircons in several samples show ages younger than the granulite metamorphism (probably as a result of Pb loss), and thus a disturbed geochemical pattern (abnormal enrichment in LREE, decreasing HREE), a few metamorphic zircons show flat and depleted HREE patterns, contrasting with the igneous pattern of older zircons (positive Ce anomaly, negative Eu anomaly, enriched HREE pattern). The main distributions observed using the kernel density estimator diagrams fall in the range 975–995 Ma (six samples), 1,100 Ma (four samples) and 1,120–1,170 Ma (six samples). Only the southernmost sample shows a marked peak at ca. 1,400 Ma. The application of the Kolmogorov–Smirnov (K–S) statistical test to the studied samples and particularly the comparison of obtained P values yield interesting similarities. Overall, two sample groups show internal similarities, i.e., they may belong to the same source area, whereas only one sample is dissimilar, failing to pass the K–S test. Comparison of these data with the timing of comparable events in the Sveconorwegian orogens, the Sunsas and Rondonia-San Ignacio belts of Amazonia, and some of the Precambrian massifs cropping out in the Andes help to constrain possible Mesoproterozoic conjugate margins of Oaxaquia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Åhäll KI, Samuelsson L, Persson PO (1997) Geochronology and structural setting of the 1.38 Ga Torpa granite; implications for charnockite formation in SW Sweden. J Geol Soc Sweden 119:37–43. doi:10.1080/11035899709546451

    Google Scholar 

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Andersson J, Soderlund U, Cornell D, Johansson L, Möller C (1999) Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion. Precambrian Res 98:151–171

    Article  Google Scholar 

  • Barbeau D Jr, Ducea M, Gehrels GE, Kidder S, Wetmore PH, Saaleby JB (2005) U–Pb detrital-zircon geochronology of northern Salinian basement and cover rocks. Geol Soc Am Bull 117:466–481

    Article  Google Scholar 

  • Barboza-Gudiño J, Zavala-Monsiváis A, Venegas-Rodríguez G, Barajas-Nigoche L (2010) Late Triassic stratigraphy and facies from northeastern Mexico: tectonic setting and provenance. Geosphere 6:621–640. doi:10.1130/GES00545.S1

    Article  Google Scholar 

  • Bartholomew MJ, Hatcher RD Jr (2010) The Grenville orogenic cycle of southern Laurentia: unraveling sutures, rifts, and shear zones as potential piercing points for Amazonia. J South Am Earth Sci 29:4–20. doi:10.1016/j.jsames.2009.08.007

    Article  Google Scholar 

  • Bettencourt JS, Leite WB Jr, Ruiz AS, Matos R, Payolla BL, Tosdal RM (2010) The Rondonian-San Ignacio Province in the SW Amazonian Craton: an overview. J South Am Earth Sci 29:28–46. doi:10.1016/j.jsames.2009.08.006

    Article  Google Scholar 

  • Bingen B, Belousova EA, Griffin WL (2011) Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Res 189:347–367. doi:10.1016/j.precamres.2011.07.005

    Article  Google Scholar 

  • Burrett C, Berry R (2000) Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia. Geology 28:103–106

    Article  Google Scholar 

  • Cameron KL, Lopez R, Ortega-Gutiérrez F, Solari LA, Keppie JD, Schulze C (2004) U–Pb geochronology and Pb isotopic compositions of leached feldspars: constraints on the origin and evolution of Grenville rocks from eastern and southern Mexico. Geol Soc Am Mem 197:755–769

    Google Scholar 

  • Cardona A, Chew D, Valencia V, Bayona G, Miškovic A, Ibañez-Mejía M (2010) Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. J South Am Earth Sci 29:92–104

    Article  Google Scholar 

  • Cawood PA, Nemchin AA, Strachan R, Prave T, Krabbendam M (2007) Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. J Geol Soc Lond 164:257–275

    Article  Google Scholar 

  • Cawood PA, Strachan R, Cutts K, Kinny PD, Hand M, Pisarevsky S (2010) Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38:99–102. doi:10.1130/G30450.1

    Article  Google Scholar 

  • Centeno-García E, Mendoza-Rosales CC, Silva-Romo G (2009) Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. Rev Mex Cienc Geol 26:18–36

    Google Scholar 

  • Chew DM, Schaltegger U, Košler J, Whitehouse MJ, Gutjahr M, Spikings RA, Miškovíc A (2007) U–Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol Soc Am Bull 119:697–711. doi:10.1130/B26080.1

    Article  Google Scholar 

  • Chew D, Magna T, Kirkland C, Miskovic A, Cardona A, Spikings R, Schaltegger U (2008) Detrital zircon fingerprint of the Proto-Andes: evidence for a Neoproterozoic active margin? Precambrian Res 167:186–200. doi:10.1016/j.precamres.2008.08.002

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Plan Sci Lett 288:115–125. doi:10.1016/j.epsl.2009.09.013

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE, Stern RJ (2010) Late Triassic Texas uplift preceding Jurassic opening of the Gulf of Mexico: evidence from U–Pb ages of detrital zircons. Geosphere 6:641–662

    Article  Google Scholar 

  • Donnelly T, Horne G, Finch R, Lopez-Ramos E (1990) Northern Central America; the Maya and Chortis blocks. The Caribbean region, Geol Soc Am, Decade of North American Geology H:339–374

  • Ducea MN, Gehrels GE, Shoemaker S, Ruiz J, Valencia VA (2004) Geologic evolution of the Xolapa Complex, southern Mexico: evidence from U–Pb zircon geochronology. Geol Soc Am Bull 116:1016–1025. doi:10.1130/B25467.1

    Article  Google Scholar 

  • Elías-Herrera M, Ortega-Gutiérrez F (2002) Caltepec fault zone: an early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. Tectonics 21:1–19. doi:10.1029/2000TC001278

    Article  Google Scholar 

  • Evans DA (2009) The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol Soc Lond Spec Publ 327:371–404. doi:10.1144/SP327.16

    Article  Google Scholar 

  • Gehrels GE (2011) Detrital zircon U–Pb geochronology: current methods and new opportunities. In: Busby C, Azor-Pérez A (eds) Tectonics of sedimentary basins: recent advances. Wiley, Hoboken, NJ, pp 47–62

    Google Scholar 

  • Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem Geophy Geosci 9. doi:10.1029/2007GC001805

  • Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson WR, Pecha M (2011) Detrital zircon U–Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3:183–200. doi:10.1130/L121.1

    Article  Google Scholar 

  • Ibañez-Mejía M, Ruiz J, Valencia VA, Cardona A, Gehrels GE, Mora AR (2011) The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: new U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Res 191:58–77. doi:10.1016/j.precamres.2011.09.005

    Article  Google Scholar 

  • Karlstrom K, Harlan S, Williams M, McLelland J, Geissman JW, Åhäll KI (1999) Refining Rodinia: geologic evidence for the Australia-Western US connection in the Proterozoic. GSA Today 9–10:1–7

    Google Scholar 

  • Keppie JD (2004) Terranes of Mexico revisited: a 1.3 billion year odyssey. Int Geol Rev 46:765–794

    Article  Google Scholar 

  • Keppie JD, Dostal J (2007) Rift-related basalts in the 1.2–1.3 Ga granulites of the northern Oaxacan Complex, southern Mexico: evidence for a rifted arc on the northwestern margin of Amazonia. Proc Geol Assoc 118:63–74

    Article  Google Scholar 

  • Keppie JD, Ortega-Gutiérrez F (2010) 1.3–0.9 Ga Oaxaquia (Mexico): remnant of an arc/backarc on the northern margin of Amazonia. J South Am Earth Sci 29:21–27. doi:10.1016/j.jsames.2009.07.001

    Article  Google Scholar 

  • Keppie JD, Ramos VA (1999) Odissey of terranes in the Iapetus and Rheic oceans during the Paleozoic: Laurentia-Gondwana Connections before Pangea. Geol Soc Am Spec Pap 336:267–276

    Google Scholar 

  • Keppie JD, Dostal J, Ortega-Gutiérrez F, Lopez R (2001) A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacan Complex, southern Mexico. Precambrian Res 112:165–181

    Article  Google Scholar 

  • Keppie JD, Dostal J, Cameron KL, Solari LA, Ortega-Gutiérrez F, Lopez R (2003) Geochronology and Geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications. Precambrian Res 120:365–389

    Article  Google Scholar 

  • Kirsch M, Keppie JD, Murphy JB, Solari L (2012) Permian-Carboniferous arc magmatism and basin evolution along the western margin of Pangea: geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. Geol Soc Am Bull. doi:10.1130/B30649.1

    Google Scholar 

  • Landing ED, Westrop SR, Keppie JD (2007) Terminal Cambrian and lowest Ordovician succession of Mexican West Gondwana: biotas and sequence stratigraphy of the Tiñu Formation. Geol Mag 144:909–936. doi:10.1017/S0016756807003585

    Article  Google Scholar 

  • Lawlor PJ, Ortega-Gutiérrez F, Cameron KL, Ochoa-Camarillo H, Lopez R, Sampson D (1999) U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of Eastern Mexico. Precambrian Res 94:73–99

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210. doi:10.1016/j.precamres.2007.04.021

    Article  Google Scholar 

  • Loewy SL, Connelly JN, Dalziel IWD (2004) An orphaned basement block: the Arequipa-Antofalla Basement of the central Andean margin of South America. Geol Soc Am Bull 116:171–187

    Article  Google Scholar 

  • Ludwig K (2008) Manual for isoplot 3.7. Berkeley Geochronology Center Special Publication 4, rev. August 26, 2008, p 77

  • Manton W (1996) The Grenville of Honduras. Geol Soc Am Ann Meet (Abstract with Programs) p A–493

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston, Mass, p 153

  • Martignole J, Martelat JE (2003) Regional-scale Grenvillian-age UHT metamorphism in the Mollendo–Camana block (basement of the Peruvian Andes). J Metamorph Geol 21:99–120

    Article  Google Scholar 

  • McDonough W, Sun S (1995) Composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mora C, Valley J (1985) Ternary feldspar thermometry in granulites from the Oaxacan Complex, Mexico. Contrib Miner Petrol 89:215–225

    Article  Google Scholar 

  • Mora C, Valley J, Ortega-Gutiérrez F (1986) The temperature and pressure conditions of Grenville-age granulite-facies metamorphism of the Oaxacan Complex, Southern Mexico. UNAM Inst Geol Revista 6:222–242

    Google Scholar 

  • Nyman MW, Karlstrom KE, Kirby E, Graubard CM (1994) Mesoproterozoic contractional orogeny in western North America: evidence from ca. 1.4 Ga plutons. Geology 22:901–904

    Article  Google Scholar 

  • Orozco-Esquivel M (1991) Geotermobarometría de granulitas precámbriacas del basamento de la Sierra Madre Oriental. Convención sobre la evolución geológica de México Memorias pp 138–141

  • Ortega-Gutiérrez F, Ruiz J, Centeno-García E (1995) Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology 23:1127–1130

    Article  Google Scholar 

  • Ortega-Gutiérrez F, Solari LA, Ortega-Obregón C, Elías-Herrera M, Martens U, Morán-Icál S, Chiquin M, Keppie JD, Torres de León R, Schaaf P (2007) The Maya-Chortís boundary: a tectonostratigraphic approach. Int Geol Rev 49:996–1024

    Article  Google Scholar 

  • Park H, Barbeau DL Jr, Rickenbaker A, Bachmann Krug D, Gehrels G (2010) Application of foreland basin detrital-zircon geochronology to the reconstruction of the southern and central Appalachian Orogen. J Geol 118:23–44. doi:10.1086/648400

    Article  Google Scholar 

  • Pettersson C, Pease V (2009) U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia. Precambrian Res 175:206–220

    Article  Google Scholar 

  • Ramos VA (2008) The basement of the central Andes: the Arequipa and related Terranes. Annu Rev Earth Planet Sci 36(1):289–324. doi:10.1146/annurev.earth.36.031207.124304

    Article  Google Scholar 

  • Ramos VA, Aleman A (2000) Tectonic evolution of the Andes. In: Cordani UG, Milani EJ, Thomaz Filo A, Campos DA (eds) Tectonic evolution of South America, 31st international geological congress. Rio de Janeiro, Brasil, pp 635–685

  • Ratschbacher L, Franz L, Min M, Bachmann R, Martens U, Stanek K, Stubner K, Nelson BK, Herrmann U, Weber B, López-Martínez M, Jonckheere R, Sperner B, Tichomirowa M, McWilliams MO, Gordon M, Meschede M, Bock P (2009) The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras. Geol Soc Lond Spec Pub 328:219–293. doi:10.1144/SP328.11

    Article  Google Scholar 

  • Ruiz J, Tosdal R, Restrepo P, Murillo-Muñeton G (1999) Pb isotope evidence for Colombia-Southern Mexico connections in the Proterozoic. Geol Soc Am Spec Pap Laurentia 336:183–197

    Google Scholar 

  • Santos JOS, Rizzotto GJ, Potter PE, McNaughton NJ, Matos RS, Hartmann LA, Chemale F Jr, Quadros MES (2008) Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U–Pb geochronology. Precambrian Res 165:120–152. doi:10.1016/j.precamres.2008.06.009

    Article  Google Scholar 

  • Sedlock R, Ortega-Gutiérrez F, Speed R (1993) Tectonostratigraphic terranes and tectonic evolution of Mexico. Geol Soc Am Spec Pap 278:153

    Google Scholar 

  • Sircombe KN, Hazelton ML (2004) Comparison of detrital zircon age distributions by kernel functional estimation. Sediment Geol 171:91–111. doi:10.1016/j.sedgeo.2004.05.012

    Article  Google Scholar 

  • Sláma J, Kosler J, Condon D, Crowley J, Gerdes A, Hanchar J, Horstwood M, Morris G, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. doi:10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Solari LA, Tanner M (2011) UPb. Age, a fast data reduction script for LA-ICP-MS U–Pb geochronology. Rev Mex Cienc Geol 28:83–91

    Google Scholar 

  • Solari LA, Keppie JD, Ortega-Gutiérrez F, Cameron KL, Lopez R, Hames WE (2003) 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. Tectonophysics 365:257–282. doi:10.1016/S0040-1951(03)00025-8

    Article  Google Scholar 

  • Solari LA, Keppie JD, Ortega-Gutiérrez F, Cameron KL, Lopez R (2004a) 990 Ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U–Pb zircon geochronological and common Pb isotopic data. Rev Mex Cienc Geol 21:212–225

    Google Scholar 

  • Solari LA, Keppie JD, Ortega-Gutiérrez F, Ortega A, Hames WE, Lee JKW (2004b) Phanerozoic Structures in the Grenvillian Northern Oaxacan Complex, Southern Mexico: result of thick-skinned tectonics. Int Geol Rev 46:614–628

    Article  Google Scholar 

  • Solari LA, Torres de León R, Hernández-Pineda G, Solé J, Solís-Pichardo G, Hernández-Treviño T (2007) Tectonic significance of Cretaceous Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico. Geol Soc Am Bull 119:1265–1279

    Article  Google Scholar 

  • Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O, Tanner M (2010) U–Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostand Geoanal Res 34:5–18

    Article  Google Scholar 

  • Vermeesch P (2009) Lies, damned lies, and statistics (in geology). EOS. Trans AGU 90:443–445

    Article  Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194. doi:10.1016/j.chemgeo.2012.04.021

    Article  Google Scholar 

  • Weber B, Hecht L (2003) Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block: the Guichicovi complex, Oaxaca, southern Mexico. Precambrian Res 124:41–67. doi:10.1016/S0301-9268(03)00078-0

    Article  Google Scholar 

  • Weber B, Kohler H (1999) Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville Terrane in Southern Mexico: origin and geologic history of the Guichicovi Complex. Precambrian Res 96:245–262

    Article  Google Scholar 

  • Weber B, Scherer EE, Schulze C, Valencia VA, Montecinos P, Mezger K, Ruiz J (2010) U–Pb and Lu–Hf isotope systematics of lower crust from central-southern Mexico—geodynamic significance of Oaxaquia in a Rodinia Realm. Precambrian Res 182:149–162. doi:10.1016/j.precamres.2010.07.007

    Article  Google Scholar 

Download references

Acknowledgments

The “Programa de Apoyo a la Investigación e Inovación Tecnológica of the Dirección General de Asuntos del Personal Académico (PAPIIT-DGAPA),” UNAM, projects IN-104010 to FOG and IN-100911-3 to LAS are acknowledged for provide funds for several parts of this work. This is also a contribution to the Consejo Nacional de Ciencia y Tecnología (Conacyt) project CB164454 granted to FOG. Ofelia Pérez is also acknowledged for lab maintenance at Laboratorio de Estudios Isotópicos, CGEO, UNAM. Journal reviews by V. Ramos, M. Kirsch, B.V. Miller improved the manuscript. We want to also thank Dr. J. Dostal for the editorial handling of the manuscript. The authors wish to specially thank John Duncan Keppie for the hard work carried in the Oaxacan Complex (and, in general, in southern Mexico) since the mid-90, for many hours spent in both the field together and discussing the geological problems of Mexican Grenville, as well as for his friendship. This work is dedicated to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi A. Solari.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M. et al. Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. Int J Earth Sci (Geol Rundsch) 103, 1301–1315 (2014). https://doi.org/10.1007/s00531-013-0938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0938-9

Keywords

Navigation