Skip to main content
Log in

Upper mantle anisotropy beneath northeast India–Asia collision zone from shear-wave splitting analysis

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharyya SK (2005) Geology and tectonics of NE India. J Geophys XXVI:35–49

    Google Scholar 

  • Angelier J, Baruah S (2009) Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys J Int 178:753–774

    Article  Google Scholar 

  • Bai L, Iidaka T, Kawakatsu H et al (2009) Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data. Phys Earth Planet Int 176:33–43. doi:10.1016/j.pepi.2009.03.008

    Article  Google Scholar 

  • Christensen NI, Crosson RS (1968) Seismic anisotropy in the upper mantle. Tectonophysics 6:93–107

    Article  Google Scholar 

  • Copley A, McKenzie D (2007) Models of crustal flow in the India–Asia collision zone. Geophys J Int 169:683–698

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF et al (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • Ding L, Zhong D, Yin A, Kapp P et al (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438

    Article  Google Scholar 

  • England P, Houseman G (1986) Finite strain calculations of continental deformation 2. Comparison with the India–Asia collision zone. J Geophys Res 91:3664–3676

    Article  Google Scholar 

  • Flesch LM, Holt WE, Silver PG et al (2005) Constraining the extent of crust–mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet Sci Lett 238:248–268. doi:10.1016/j.epsl.2005.06.023

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley, London

    Google Scholar 

  • Gururajan NS, Choudhuri BK (2003) Geology and tectonic history of the Lohit Valley, Eastern Arunachal Pradesh. J Asian Earth Sci 21:731–741

    Article  Google Scholar 

  • Hall SA, Kendall JM, van der Baan M (2004) Some comments on the effects of lower mantle anisotropy on SKS and SKKS phases. Phys Earth Planet Int 146:469–481. doi:10.1016/j.pepi.2004.05.002

    Article  Google Scholar 

  • Hallet B, Molnar P (2001) Distorted drainage basins as markers of crustal strain east of the Himalaya. J Geophys Res 106:13697–13709. doi:10.1029/2000JB900335

    Article  Google Scholar 

  • Hazarika D, Arora BR, Bora C (2012) Crustal structure and deformation in the northeast India–Asia collision zone: constraints from receiver function analysis. Geophys J Int 188:737–749. doi:10.1111/j.1365-246X.2011.05267

    Article  Google Scholar 

  • Heintz M, Kumar VP, Gaur VK et al (2009) Anisotropy of the Indian continental lithospheric mantle. Geophys J Int 179:1341–1360. doi:10.1111/j.1365-246X.2009.04395.x

    Article  Google Scholar 

  • Hess H (1964) Seismic anisotropy of the uppermost mantle under oceans. Nature 203:629–631

    Article  Google Scholar 

  • Hirn A, Jiang M, Sapin M et al (1995) Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature 375:571–574

    Article  Google Scholar 

  • Holt WE, Ni JF, Wallace TC, Haines AJ (1991) The active tectonics of the Eastern Himalayan syntaxis and surrounding regions. J Geophys Res 96:14595–14632

    Article  Google Scholar 

  • Huang WC, Ni JF, Tillman F et al (2000) Seismic polarization anisotropy beneath the central Tibetan Plateau. J Geophys Res 105:27979–27989

    Article  Google Scholar 

  • Jade S, Mukul M, Bhattacharyya AK et al (2007) Estimates of interseismic deformation in Northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234. doi:10.1016/j.epsl.2007.08.031

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Travel times for global earthquake location and phase identification. Geophys J Int 105:429–465

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys J Int 122:108–124. doi:10.1111/j.1365-246X.1995.tb03540.x

    Article  Google Scholar 

  • Lev E, Long MD, van der Hilst RD (2006) Seismic anisotropy from shear-wave splitting in Eastern Tibet reveals changes in lithospheric deformation. Earth Planet Sci Lett 251:293–304

    Article  Google Scholar 

  • Leven JN, Jackson L, Ringwood AE (1981) Upper mantle seismic anisotropy and lithospheric decoupling. Nature 289:234–239

    Article  Google Scholar 

  • Levin V, Park J (1998) P-SH conversions in layered media with hexagonally symmetric anisotropy: a cookbook. Pure Appl Geophys 151:669–697

    Article  Google Scholar 

  • Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30:407–461. doi:10.1007/s10712-009-9075-1

    Article  Google Scholar 

  • McNamara DE, Owens TJ, Silver PG et al (1994) Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res 99:13655–13665

    Article  Google Scholar 

  • McNamara DE, Walter WR, Owens TJ, Ammon CJ (1997) Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J Geophys Res 102:493–506

    Article  Google Scholar 

  • Montagner JP, Nataf HC (1986) A simple method for inverting the azimuthal anisotropy of surface waves. J Geophys Res 91:511–520

    Article  Google Scholar 

  • Replumaz A, Tapponnier P (2003) Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J Geophys Res 108:2285. doi:10.1029/2001JB000661

    Article  Google Scholar 

  • Ribe NM (1992) On the relation between seismic anisotropy and finite strain. J Geophys Res 97:8737–8747

    Article  Google Scholar 

  • Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev Geophys 37:65–106

    Article  Google Scholar 

  • Shen F, Royden LH, Burchfi BC (2001) Large-scale crustal deformation of the Tibetan Plateau. J Geophys Res 106:6793–6816. doi:10.1029/2000JB900389

    Article  Google Scholar 

  • Shen ZK, Lu J, Wang M, Bürgmann R (2005) Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res 110:B11409. doi:10.1029/2004JB003421

    Article  Google Scholar 

  • Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432

    Article  Google Scholar 

  • Silver PG, Chan WW (1988) Implications for continental structure and evolution from seismic anisotropy. Nature 335:34–39

    Article  Google Scholar 

  • Silver PG, Chan WW (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res 96:16429–16454

    Article  Google Scholar 

  • Silver PG, Savage MK (1994) The interpretation of shear wave splitting parameters in the presence of two anisotropic layers. Geophys J Int 119:949–963

    Article  Google Scholar 

  • Silver PG, Kaneshima S, Meade C (1993) Why is the lower mantle so isotropic? Eos Trans AGU 74(16) Spring Meeting supp:313

    Google Scholar 

  • Simons FJ, van der Hilst RD, Montagner JP, Zielhuis A (2002) Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophys J Int 151:738–754

    Article  Google Scholar 

  • Singh A, Kumar MR, Raju PS, Ramesh DS (2006) Shear wave anisotropy of the northeast Indian lithosphere. Geophys Res Lett 33:L16302. doi:10.1029/2006GL026106

    Article  Google Scholar 

  • Singh A, Kumar MR, Raju PS (2007) Mantle deformation in Sikkim and adjoining Himalaya: evidences for a complex flow pattern. Phys Earth Planet Int 164:232–241. doi:10.1016/j.pepi.2007.07.003

    Article  Google Scholar 

  • Sol S, Meltzer A, Burgmann R et al (2007) Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology 35:563–566. doi:10.1130/G23408A.1

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain AY et al (1982) Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10:611–616

    Article  Google Scholar 

  • Tapponnier P, Zhiqin X, Roger F, Meyer B et al (2001) Oblique stepwise rise and growth of the Tibetan Plateau. Science 294:1671–1677. doi:10.1126/scince.105978

    Article  Google Scholar 

  • Thakur VC, Jain AK (1975) Some observation on deformation, metamorphism and tectonic significance of the rocks of some parts of Mishmi hills, Lohit district (NEFA), Arunachal Pradesh. Him Geol 5:339–364

    Google Scholar 

  • Vinnik LP, Farra V, Romanowicz B (1989) Azimuthal anisotropy in the earth from observations of SKS at Geoscope and NARS broadband stations. Bull Seismol Soc Am 79:1542–1558

    Google Scholar 

  • Vinnik LP, Makeyeva LI, Milev A et al (1992) Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int 111:433–447

    Article  Google Scholar 

  • Wang E, Burchfiel BC (1997) Interpretations of Cenozoic tectonics in the right-lateral accommodation zone between the Ailo Shan shear zone and the Eastern Himalayan syntaxis. Int Geol Rev 39:191–219

    Article  Google Scholar 

  • Wang Q, Zhang PZ, Freymueller JT et al (2001) Present-day crustal deformation in China constrained by global positioning system measurements. Science 294:574–577

    Article  Google Scholar 

  • Zhang Z, Karato SI (1995) Lattice preferred orientation in olivine aggregates deformed in simple shear. Nature 375:774–777

    Article  Google Scholar 

  • Zhang Z, Yuan X, Chen Y et al (2010) Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Phys Earth planet Int 292:254–264. doi:10.1016/j.epsl.2010.01.046

    Google Scholar 

Download references

Acknowledgments

This study is supported by the Deep Continental Studies Program of Department of Science and Technology (DST), Government of India. The financial support and encouragement received from the DST and members of the project monitoring committee are acknowledged with thanks. The encouragement and facilities provided by the host Institution (WIHG, Dehradun) are recorded with gratitude. We are thankful to the scientists and technical staff of Geophysics Group, WIHG, for their kind encouragement and fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devajit Hazarika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazarika, D., Yadav, D.K., Sriram, V. et al. Upper mantle anisotropy beneath northeast India–Asia collision zone from shear-wave splitting analysis. Int J Earth Sci (Geol Rundsch) 102, 2061–2076 (2013). https://doi.org/10.1007/s00531-013-0922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0922-4

Keywords

Navigation