Abstract
New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.
Similar content being viewed by others
References
Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sed Geol 46:67–75
Ambraseys N, Sarma S (1969) Liquefaction of soils induced by earthquakes. Bull Seis Soc Am 59:651–664
Anand A, Jain AK (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan-Andaman Arc, India. Tectonophysics 133:105–120
Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Z dt Ges Geowiss 150:673–695
Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. Spec Publ European Ass Petrol Geoscien 1, pp 149–159
Baldschuhn R, Binot F, Fleig S, Kockel F (1999) Geotektonischer Atlas von Nordwestdeutschland und dem deutschen Nordseesektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jb A 153:1–80
Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235:249–263
Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170
Black RF (1976) Periglacial features indicative of permafrost: ice and soil wedges. Quat Res 6:3–26
Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81:281–293
Brandes C, Winsemann J, Roskosch J, Meinsen J, Tanner DC, Frechen M, Steffen H, Wu P (2012) Activity of the Osning thrust during the late Weichselian: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62
Burne RV (1970) The origin and significance of sand volcanoes in the bude formation (Cornwall). Sedimentology 15:211–228
Cartwright J, James D, Huuse M, Vetel W, Hurst A (2008) The geometry and emplacement of conical sandstone intrusions. J Struc Geol 30:854–867
Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seis 11:473–487
Chen J, van Loon AJ, Han Z, Chough SK (2009) Funnel-shaped, breccia-filled clastic dikes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sed Geol 221:1–6
Chu DB, Stewart JP, Lee S, Tsai JS, Lin PS, Chu BL, Seed RB, Hsu SC, Yu MS, Wang MCH (2004) Documentation of soil conditions at liquefaction and non-liquefaction sites from 1999 Chi–Chi (Taiwan) earthquake. Soil Dyn Earthq Eng 24:647–657
Clague JJ, Naesgaard E, Sy A (1992) Liquefaction features on the Fraser delta: evidence for prehistoric earthquakes? Can J Earth Sci 29:1734–1745
Cobbold PR, Rodrigues N (2007) Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef” and “cone-in-cone”). Geofluids 7:313–332
Cosgrove JW (2001) Hydraulic fracturing during the formation and deformation of a basin: a factor in the dewatering of low-permeability sediments. AAPG Bull 85:737–748
Cosgrove JW, Hillier RD (2000) Forced fold development within Tertiary sediments of the Alba Field, UKCS: evidence of differential compaction and post-depositional sandstone remobilization. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, Geol Soc London Spec Publ 169, pp 61–71
Cox RT, Hill AA, Larsen D, Holzer T, Forman SL, Noce T, Gardner C, Morat J (2007) Seismotectonic implications of sand blows in the southern Mississippi Embayment. Eng Geol 89:278–299
Cox RT, Gordon J, Forman S, Brezina T, Negrau M, Hill A, Gardner C, Machin S (2010) Paleoseismic Sand blows in North Louisiana and South Arkansas. Seis Res Let 81:1032–1047
Dahm T, Krüger F, Stammler K, Klinge K, Kind R, Wylegalla K, Grasso J-R (2007) The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery. Bull Seis Soc Am 97:691–704
Davison C (1921) A manual of seismology. The University Press, 256 p
Drozdzewski G (1988) Die Wurzel der Osning-Überschiebung und der Mechanismus herzynischer Inversionsstörungen in Mitteleuropa. Geol Rundsch 77:127–141
Eissmann L (1994) Grundzüge der Quartärgeologie Mitteldeutschlands (Sachsen, Sachsen-Anhalt, Südbrandenburg, Thüringen). Altenburger Naturwissenschaftliche Forschung 7:55–135
Fehrentz M, Radtke U (2001) Luminescence dating of Pleistocene outwash sediments of the Senne area (Eastern Münsterland, Germany). Quat Sci Rev 20:725–729
French HM (2007) The periglacial environment. 3rd edn. Wiley, p 458
Frey SE, Gingras MK, Dashtgard SE (2009) Experimental studies of gas-escape and water-escape structures: mechanisms and morphologies. J Sed Res 79:808–816
Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187
Gardner JV, Prior DB, Field ME (1999) Humboldt Slide—a large shear-dominated retrogressive slope failure. Mar Geol 154:323–338
Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Z dt Ges Geowiss 157:41–56
Gibert L, Alfaro P, Gácia-Totosa FJ, Scott G (2011) Superposed deformed beds produced by single earthquakes (Tecopa basin, California): insights into paleoseismicity. Sed Geol 235:148–159
Glennie KW, Buller AT (1983) The Permian Weissliegend of NW Europe: the partial deformation of aeolian dune sands caused by the Zechstein transgression. Sed Geol 35:43–81
Grünthal G (2006a) Das Erdbeben von 1736 in der Uckermark. Brandenburgische Geowissenschaftliche Beiträge 13:173–175
Grünthal G (2006b) Die Erdbeben im Land Brandenburg und im östlichen Teil Deutschlands. Brandenburgische Geowissenschaftliche Beiträge 13:165–168
Grünthal G, Bosse C (1997) Seismic hazard assessment for low-seismicity areas—case study: northern Germany. Nat Hazard 14:127–139
Grünthal G, Meier R (1995) Das ′Prignitz`-Erdbeben von 1409. Brandenburgische Geowissenschaftliche Beiträge 2:5–27
Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seis 16:535–570
Hallet B, Waddington ED (1992) Buoyancy forces induced by freeze-thaw in the active layer: implications for diapirism and soil circulation. In: Dixion, JC, Abrahams AD (eds) Periglacial Geomorphology, Proceedings 22nd annual symposium in geomorphology, Binghamton 1991, Wiley, pp 251–279
Harbort E, Keilhack K (1918) Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten 1:25000, Blatt Senne. Lieferung 197, Nr. 4118, Berlin, 28 p
Harms FJ (1983) Zur Geologie saale-zeitlicher Sedimente am Rande des Leinetals zwischen Imsen und Freden. Beitr Naturk Niedersach 36:53–69
Harry DG, Godzik JS (1988) Ice wedges: growth, thaw transformation, and paleoenvironmental significance. J Quat Sci 3:39–55
Hempton MR, Dewey JF (1983) Earthquake-induced deformation structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98:7–14
Hoffmann G, Reicherter K (2012) Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci 101:351–363
Holzer TL, Clark MM (1993) Sand boils without earthquakes. Geology 21:873–876
Holzer TL, Noce TE, Bennett MJ, Tinsley JC, Rosenberg LI (2005) Liquefaction at Oceano, California, during the 2003 San Simeon Earthquake. Bull Seis Soc Am 95:2396–2411
Horváth Z, Michéli E, Mindszenty A, Berényi-Üveges J (2005) Soft-sediment deformation structures in Late Miocene-Pleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): cryoturbation, load structures or seismites. Tectonophysics 410:81–95
Housner GW (1958) The mechanism of sand blows. Bull Seis Soc Am 48:155–161
Hurst A. Cartwright J (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production, AAPG Memoir 87, Tulsa, pp 1–19
Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth Sci Rev 106:215–246
Huuse MJ, Cartwright JA, Hurst A, Steinsland N (2007) Seismic characterization of large-scale sandstone intrusions. In: Hurst A, Cartwright JA (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir 87, Tulsa, pp 21–35
Jones AP, Omoto K (2000) Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of late Pleistocene lacustrine sand and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211–1226
Juschus O (2003) Das Jungmoränenland südlich von Berlin—Untersuchungen zur jungquartären Landschaftsentwicklung zwischen Unterspreewald und Nuthe. Berliner Geographische Arbeiten 95:152
Kaiser A (2005) Neotectonic modelling of the North German Basin and adjacent areas—a tool to understand postglacial landscape evolution? Z dt Ges Geowiss 156:357–366
Kasse C (1997) Cold-climate sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost Periglac Process 8:295–311
Kasse C (2002) Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog Phys Geogr 24:507–532
Keller G (1974) Die Fortsetzung der Osningzone auf dem Nordwestabschnitt des Teutoburger Waldes. N Jb Geol Paläont Mh 2:72–95
Keller EA, Pinter N (2002) Active Tectonics - Earthquakes, Uplift, and Landscape. Prentice-Hall, Second Edition 362 pp
Kjaer KH, Krüger J (2001) The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology 48:935–952
Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842
Koç Taşgin C, Ohan H, Türkmen I, Aksoy E (2011) Soft-sediment deformation in the late Miocene Şelmo Formation around Adiyaman area, Southeastern Turkey. Sed Geol 235:277–291
Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth J Geosci 82:367–382
Leydecker G (2009) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800—2007. Datenfile www.bgr.de/quakecat, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover
Leydecker G, Kopera JR (1999) Seismological hazard assessment for a site in Northern Germany, an area of low seismicity. Eng Geol 52:293–304
Li Y, Craven J, Schweig ES, Obermeier SF (1996) Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake-induced liquefaction? Geology 24:171–174
Littke R, Scheck-Wenderoth M, Brix MR, Nelskamp S (2008) Subsidence, inversion and evolution of the thermal field. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds), Dynamics of complex intracontinental Basins—The Central European Basin System. Springer, Heidelberg, pp 125–141
Lohr T, Krawczk CM, Tanner DC, Samiee R, Endres H, Oncken O, Trappe H, Kukla PA (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res 19:579–597
LØseth HL, Wensaas B, Arntsen N, Hovland M (2003) Gas and fluid inhjection triggering shallow mud mobilization in the Hordaland Group, North Sea. In: Van Rensbergen P, Hillis R, Maltman A, Morley C (eds) Subsurface sediment mobilization, Geol Soc London Spec Publ 216, pp 139–157
Lotze F (1929) Überschiebungs-, Abscherungs- und Zerrungstektonik bei der Osningfaltung. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1929:231–239
Lotze F (1951) Neue Ergebnisse der Quartärgeologie Westfalens V. Zur Stratigraphie des Senne-Diluviums. N Jb Geol Paläont Mh 97–102
Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204
Lowe DR, LoPiccolo RD (1974) The characteristics and origins of dish and pillar structures. J Sed Petrol 44:484–501
Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798
McKee ED, Douglass JR, Rittenhouse S (1971) Deformation of Lee-side Laminae in Eolian Dunes. GSA Bull 82:359–378
Meier R, Grünthal G (1992) Eine Neubewertung des Erdbebens vom 3. September 1770 bei Alfhausen (Niedersachsen). Osnabrücker naturwissenschaftliche Mitteilungen 18:67–80
Meier D, Kronberg P (1989) Klüftung in Sedimentgestein. Enke Verlag Stuttgart, p 116
Meinsen J, Winsemann J, Weitkamp A, Landmeyer N, Lenz A, Dölling A (2011) Middle Pleistocene (Saalian) lake outburst floods in the Münsterland Embayment (NW Germany): impacts and magnitudes. Quat Sci Rev 30:2597–2625
Meinsen J, Winsemann J, Roskosch J, Brandes C, Frechen M, Dultz S, Böttcher J (2013) Climate control on the evolution of Late Pleistocene alluvial fan and aeolian sand-sheet systems in NW Germany. Boreas (in press)
Mills PC (1983) Genesis and diagnostic value of soft-sediment deformation structures—a review. Sed Geol 35:83–104
Mörz T, Karlik EA, Kreiter S, Kopf A (2007) An experiment setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sed Geol 196:251–267
Mol J, Vandenberghe J, Kasse K, Stel H (1993) Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. J Quat Sci 8:15–30
Montenat C, Barrier P, d′Estevou PO, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196:5–30
Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sed Geol 196:31–45
Moretti M, Miguel J, Alfaro P, Walsh N (2001) Asymmetrical Soft-sediment Deformation Structures Triggered by Rapid Sedimentation in Turbiditic Deposits (Late Miocene, Guadix Basin, Southern Spain). Facies 44:283–294
Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sed Res 66:43–57
Murton JB (1996) Morphology and Paleoenvironmental significance of Quaternary sand veins, sand wedges, and composit wedges, Tuktoyaktuk coastlands, western arctic Canada. J Sed Res 66:17–25
Murton JM, French HM (1993) Thermokarst involutions, Summer Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Permafrost Periglac Process 4:217–229
Neumann-Mahlkau P (1976) Recent sand volcanoes in the sand of a dike under construction. Sedimentology 23:421–425
Neurautter TW, Roberts HH (1994) Three generations of mud volcanoes on the Louisiana continental slope. Geo-Mar Lett 14:120–125
Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41:233–253
Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76
Obermeier SF (2009) Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In: McCalpin JP (ed) Paleoseismology. International Geophysics Series, 95, Elsevier, Amsterdam, pp 497–564
Obermeier SF, Gohn GS, Weems RE, Gelinas RL, Rubin M (1985) Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science 277:408–410
Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:209–234
Oliveira CMM, Hodgson DM, Flint SS (2009) Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology 56:1201–1225
Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y, Okamura M, Yasuda S (2011) Comparison of liquefaction features observed during the 2010 and 2011 Canterbury Earthquakes. Seis Res Lett 82:905–918
Otto V (2003) Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123
Owen G (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43:279–293
Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sed Geol 235:141–147
Papadopoulos GA, Lefkopoulos G (1993) Magnitude-Distance relation for liquefaction in soil from earthquakes. Bull Seis Soc Am 83:925–938
Peterson RA, Walker DA, Romanovsky VE, Knudson JA, Raynolds MK (2003) A different frost heave model: cryoturbation-vegetation interactions. In: Phillips M, Springmann SM, Arenson LU (eds) Permafrost: proceedings of the 8th international conference on Permafrost: proceedings of the 8th international conference on Permafrost, Zurich, Switzerland, 21–25 July 2003, pp 885–890
Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344
Prange W (1995) Kleintektonische Untersuchungen in Lockersedimenten. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 65:47–65
Pringle JK, Westerman AR, Stanbrook DA, Tatum DI, Gardine AR (2007) Sand volcanoes of the Carboniferous Ross Formation, County Clare, Western Ireland: 3-D internal sedimentary structure and formation. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir, 87, Tulsa, pp 227–231
Ringrose PS (1989) Palaeoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova 1:57–62
Rodrigues N, Cobbold PR, Løseth H (2009) Physical modeling of sand injectites. Tectonophysics 474:610–632
Rodríguez-López JP, Meléndez N, De Boer PL, Soria AR (2010) The action of wind in a mid-Cretaceous subtropical erg-margin system close to the Variscan Iberian Massif, Spain. Sedimentology 57:1315–1356
Rosenfeld U (1983) Beobachtungen und Gedanken zur Osningtektonik. N Jb Geol Paläont 166:72–95
Roskosch J, Tsukamoto S, Meinsen J, Frechen M, Winsemann J (2012) OSL dating of an upper Pleistocene fluvial-aeolian complex: the upper Senne of the Münsterland Embayment. Quat Geochron 10:94–101
Ross JA, Peakall J, Keevil GM (2011) An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology 58:1693–1715
Saucier RT (1989) Evidence for episodic sand-blow activity during the 1811–1812 New Madrid (Missouri) earthquake series. Geology 17:103–106
Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299
Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics 397:143–165
Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159
Selsing L (1981) Stress analysis on conjugate normal faults in unconsolidated Weichselian glacial sediments from Brorfelde, Denmark. Boreas 10:275–279
Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896
Seraphim ET (1978) Erdgeschichte, Landschaftsformen und geomorphologische Gliederung der Senne. In: Seraphim ET (ed) Beiträge zur Ökologie der Senne 1. Teil:7–24
Seraphim ET (1979) Der sog. Senne-Sander, eine Kame-Terrasse—Drenthestadiale Grundmoräne und post-moränale Schmelzwasser-Sedimente der Oberen Senne. Berichte des Naturwissenschaftlichen Vereins Bielefeld 24:319–344
Sibson RH (1981) Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature 289:665–667
Sieh KE (1978) Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. JGR 83:3907–3939
Sims JD (1973) Determining earthquakes recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152
Sims JD, Garvin CD (1995) Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull o Seis Soc Am 85:51–65
Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the south-western margin of the Central European Basin System—Application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics 470:129–146
Skupin K (1985) Senne. In: Geologisches Landesamt Nordrhein-Westfalen (ed) Geologische Karte von Nordrhein-Westfalen 1:100000—Erläuterungen zu Blatt C4318 Paderborn, Krefeld, pp 42–45
Skupin K (1994) Aufbau, Zusammensetzung und Alter der Flugsand- und Dünenbildungen im Bereich der Senne (östl. Münsterland). Geologie Paläontologie Westfalen 28:41–72
Skupin K (2002) Geologische Karte von Nordrhein-Westfalen 1:100000–Erläuterungen zu Blatt C4314 Gütersloh, Krefeld, 120 pp
Stille H (1924) Die Osning-Überschiebung. Abhandlungen der preußischen geologischen Landesanstalt 95:32–56
Stille H (1953) Zur Geschichte der Osning-Forschung. Geotektonische Forschung 9:1–6
Sullwood HH (1959) Nomenclature of load deformation in turbidites. GSA Bull 70:1247–1248
Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: evidence from pre-Hispanic seismic activity? Sed Geol 235:188–199
Talwani P, Rajendran K (1991) Some seismological and geometric features of intraplate earthquakes. Tectonophysics 186:19–41
Tsuji T, Miyata Y (1987) Fluidization and liquefaction of sand beds—experimental study and examples from Nichinan group. J Geol Soc Japan 93:791–808
Tuttle MP, Schweig ES (1996) Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. JGR 101(B3):6171–6178
Tuttle MP, Schweig ES, Sims JD, Lafferty RH, Wolf LW, Haynes ML (2002) The earthquake potential of the New Madrid Seismic Zone. Bull Seis Soc Am 92:2080–2089
van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55
van Loon AJ (2010) Sedimentary volcanoes: overview and implications for the definition of a volcano on earth. In: Canòn-Tapia E, Szakács A (eds) What is a volcano? GSA Special Paper 470, pp 31–41
van Loon AJ, Maulik P (2011) Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sed Geol 238:145–155
van Wees JD, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59
Vandenberghe J (1992) Cryoturbations: a sediment structural analysis. Permafrost Periglac Process 3:343–352
Vandenberghe J, Pissart A (1993) Permafrost changes in Europe during the last glacial. Permafrost Periglac Process 4:121–135
van Vliet-Lanoe B (1988) The significance of cryoturbation phenomena in environmental reconstruction. J Quat Sci 3:85–96
Vogt J, Grünthal G (1994) Die Erdbebenfolge vom Herbst 1612 im Raum Bielefeld. Geowissenschaften 12:236–240
Wang C-Y, Wong A, Dreger DS, Manga M (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seis Soc Am 96:355–363
Washburn AL (1980) Permafrost features as evidence of climatic change. Earth-Sci Rev 15:327–402
Acknowledgments
We would like to thank the owners of the Oerlinghausen and Augustdorf open sand pits for the permission to enter their property. We would like to thank G. Hoffmann and K. Reicherter for constructive reviews and A. Nelson for helpful comments on an earlier version of this manuscript. Ariana Osman is gratefully acknowledged for improving the English. Many thanks are due to Janine Meinsen, Jörg Lang and Julia Roskosch for help in the field. Jamie Buscher, Christoph Glotzbach, Andrea Hampel, Holger Steffen and David Tanner are gratefully acknowledged for discussion.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brandes, C., Winsemann, J. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. Int J Earth Sci (Geol Rundsch) 102, 2255–2274 (2013). https://doi.org/10.1007/s00531-013-0914-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-013-0914-4