Skip to main content
Log in

Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sed Geol 46:67–75

    Google Scholar 

  • Ambraseys N, Sarma S (1969) Liquefaction of soils induced by earthquakes. Bull Seis Soc Am 59:651–664

    Google Scholar 

  • Anand A, Jain AK (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan-Andaman Arc, India. Tectonophysics 133:105–120

    Google Scholar 

  • Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Z dt Ges Geowiss 150:673–695

    Google Scholar 

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. Spec Publ European Ass Petrol Geoscien 1, pp 149–159

  • Baldschuhn R, Binot F, Fleig S, Kockel F (1999) Geotektonischer Atlas von Nordwestdeutschland und dem deutschen Nordseesektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jb A 153:1–80

    Google Scholar 

  • Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235:249–263

    Google Scholar 

  • Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170

    Google Scholar 

  • Black RF (1976) Periglacial features indicative of permafrost: ice and soil wedges. Quat Res 6:3–26

    Google Scholar 

  • Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81:281–293

    Google Scholar 

  • Brandes C, Winsemann J, Roskosch J, Meinsen J, Tanner DC, Frechen M, Steffen H, Wu P (2012) Activity of the Osning thrust during the late Weichselian: ice-sheet and lithosphere interactions. Quat Sci Rev 38:49–62

    Google Scholar 

  • Burne RV (1970) The origin and significance of sand volcanoes in the bude formation (Cornwall). Sedimentology 15:211–228

    Google Scholar 

  • Cartwright J, James D, Huuse M, Vetel W, Hurst A (2008) The geometry and emplacement of conical sandstone intrusions. J Struc Geol 30:854–867

    Google Scholar 

  • Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seis 11:473–487

    Google Scholar 

  • Chen J, van Loon AJ, Han Z, Chough SK (2009) Funnel-shaped, breccia-filled clastic dikes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sed Geol 221:1–6

    Google Scholar 

  • Chu DB, Stewart JP, Lee S, Tsai JS, Lin PS, Chu BL, Seed RB, Hsu SC, Yu MS, Wang MCH (2004) Documentation of soil conditions at liquefaction and non-liquefaction sites from 1999 Chi–Chi (Taiwan) earthquake. Soil Dyn Earthq Eng 24:647–657

    Google Scholar 

  • Clague JJ, Naesgaard E, Sy A (1992) Liquefaction features on the Fraser delta: evidence for prehistoric earthquakes? Can J Earth Sci 29:1734–1745

    Google Scholar 

  • Cobbold PR, Rodrigues N (2007) Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef” and “cone-in-cone”). Geofluids 7:313–332

    Google Scholar 

  • Cosgrove JW (2001) Hydraulic fracturing during the formation and deformation of a basin: a factor in the dewatering of low-permeability sediments. AAPG Bull 85:737–748

    Google Scholar 

  • Cosgrove JW, Hillier RD (2000) Forced fold development within Tertiary sediments of the Alba Field, UKCS: evidence of differential compaction and post-depositional sandstone remobilization. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, Geol Soc London Spec Publ 169, pp 61–71

  • Cox RT, Hill AA, Larsen D, Holzer T, Forman SL, Noce T, Gardner C, Morat J (2007) Seismotectonic implications of sand blows in the southern Mississippi Embayment. Eng Geol 89:278–299

    Google Scholar 

  • Cox RT, Gordon J, Forman S, Brezina T, Negrau M, Hill A, Gardner C, Machin S (2010) Paleoseismic Sand blows in North Louisiana and South Arkansas. Seis Res Let 81:1032–1047

    Google Scholar 

  • Dahm T, Krüger F, Stammler K, Klinge K, Kind R, Wylegalla K, Grasso J-R (2007) The 2004 Mw 4.4 Rotenburg, northern Germany, earthquake and its possible relationship with gas recovery. Bull Seis Soc Am 97:691–704

    Google Scholar 

  • Davison C (1921) A manual of seismology. The University Press, 256 p

  • Drozdzewski G (1988) Die Wurzel der Osning-Überschiebung und der Mechanismus herzynischer Inversionsstörungen in Mitteleuropa. Geol Rundsch 77:127–141

    Google Scholar 

  • Eissmann L (1994) Grundzüge der Quartärgeologie Mitteldeutschlands (Sachsen, Sachsen-Anhalt, Südbrandenburg, Thüringen). Altenburger Naturwissenschaftliche Forschung 7:55–135

    Google Scholar 

  • Fehrentz M, Radtke U (2001) Luminescence dating of Pleistocene outwash sediments of the Senne area (Eastern Münsterland, Germany). Quat Sci Rev 20:725–729

    Google Scholar 

  • French HM (2007) The periglacial environment. 3rd edn. Wiley, p 458

  • Frey SE, Gingras MK, Dashtgard SE (2009) Experimental studies of gas-escape and water-escape structures: mechanisms and morphologies. J Sed Res 79:808–816

    Google Scholar 

  • Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187

    Google Scholar 

  • Gardner JV, Prior DB, Field ME (1999) Humboldt Slide—a large shear-dominated retrogressive slope failure. Mar Geol 154:323–338

    Google Scholar 

  • Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Z dt Ges Geowiss 157:41–56

    Google Scholar 

  • Gibert L, Alfaro P, Gácia-Totosa FJ, Scott G (2011) Superposed deformed beds produced by single earthquakes (Tecopa basin, California): insights into paleoseismicity. Sed Geol 235:148–159

    Google Scholar 

  • Glennie KW, Buller AT (1983) The Permian Weissliegend of NW Europe: the partial deformation of aeolian dune sands caused by the Zechstein transgression. Sed Geol 35:43–81

    Google Scholar 

  • Grünthal G (2006a) Das Erdbeben von 1736 in der Uckermark. Brandenburgische Geowissenschaftliche Beiträge 13:173–175

    Google Scholar 

  • Grünthal G (2006b) Die Erdbeben im Land Brandenburg und im östlichen Teil Deutschlands. Brandenburgische Geowissenschaftliche Beiträge 13:165–168

    Google Scholar 

  • Grünthal G, Bosse C (1997) Seismic hazard assessment for low-seismicity areas—case study: northern Germany. Nat Hazard 14:127–139

    Google Scholar 

  • Grünthal G, Meier R (1995) Das ′Prignitz`-Erdbeben von 1409. Brandenburgische Geowissenschaftliche Beiträge 2:5–27

    Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seis 16:535–570

    Google Scholar 

  • Hallet B, Waddington ED (1992) Buoyancy forces induced by freeze-thaw in the active layer: implications for diapirism and soil circulation. In: Dixion, JC, Abrahams AD (eds) Periglacial Geomorphology, Proceedings 22nd annual symposium in geomorphology, Binghamton 1991, Wiley, pp 251–279

  • Harbort E, Keilhack K (1918) Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten 1:25000, Blatt Senne. Lieferung 197, Nr. 4118, Berlin, 28 p

  • Harms FJ (1983) Zur Geologie saale-zeitlicher Sedimente am Rande des Leinetals zwischen Imsen und Freden. Beitr Naturk Niedersach 36:53–69

    Google Scholar 

  • Harry DG, Godzik JS (1988) Ice wedges: growth, thaw transformation, and paleoenvironmental significance. J Quat Sci 3:39–55

    Google Scholar 

  • Hempton MR, Dewey JF (1983) Earthquake-induced deformation structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98:7–14

    Google Scholar 

  • Hoffmann G, Reicherter K (2012) Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci 101:351–363

    Google Scholar 

  • Holzer TL, Clark MM (1993) Sand boils without earthquakes. Geology 21:873–876

    Google Scholar 

  • Holzer TL, Noce TE, Bennett MJ, Tinsley JC, Rosenberg LI (2005) Liquefaction at Oceano, California, during the 2003 San Simeon Earthquake. Bull Seis Soc Am 95:2396–2411

    Google Scholar 

  • Horváth Z, Michéli E, Mindszenty A, Berényi-Üveges J (2005) Soft-sediment deformation structures in Late Miocene-Pleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): cryoturbation, load structures or seismites. Tectonophysics 410:81–95

    Google Scholar 

  • Housner GW (1958) The mechanism of sand blows. Bull Seis Soc Am 48:155–161

    Google Scholar 

  • Hurst A. Cartwright J (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production, AAPG Memoir 87, Tulsa, pp 1–19

  • Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth Sci Rev 106:215–246

    Google Scholar 

  • Huuse MJ, Cartwright JA, Hurst A, Steinsland N (2007) Seismic characterization of large-scale sandstone intrusions. In: Hurst A, Cartwright JA (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir 87, Tulsa, pp 21–35

  • Jones AP, Omoto K (2000) Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of late Pleistocene lacustrine sand and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211–1226

    Google Scholar 

  • Juschus O (2003) Das Jungmoränenland südlich von Berlin—Untersuchungen zur jungquartären Landschaftsentwicklung zwischen Unterspreewald und Nuthe. Berliner Geographische Arbeiten 95:152

    Google Scholar 

  • Kaiser A (2005) Neotectonic modelling of the North German Basin and adjacent areas—a tool to understand postglacial landscape evolution? Z dt Ges Geowiss 156:357–366

    Google Scholar 

  • Kasse C (1997) Cold-climate sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost Periglac Process 8:295–311

    Google Scholar 

  • Kasse C (2002) Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog Phys Geogr 24:507–532

    Google Scholar 

  • Keller G (1974) Die Fortsetzung der Osningzone auf dem Nordwestabschnitt des Teutoburger Waldes. N Jb Geol Paläont Mh 2:72–95

  • Keller EA, Pinter N (2002) Active Tectonics - Earthquakes, Uplift, and Landscape. Prentice-Hall, Second Edition 362 pp

    Google Scholar 

  • Kjaer KH, Krüger J (2001) The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology 48:935–952

    Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842

    Google Scholar 

  • Koç Taşgin C, Ohan H, Türkmen I, Aksoy E (2011) Soft-sediment deformation in the late Miocene Şelmo Formation around Adiyaman area, Southeastern Turkey. Sed Geol 235:277–291

    Google Scholar 

  • Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth J Geosci 82:367–382

    Google Scholar 

  • Leydecker G (2009) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800—2007. Datenfile www.bgr.de/quakecat, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover

  • Leydecker G, Kopera JR (1999) Seismological hazard assessment for a site in Northern Germany, an area of low seismicity. Eng Geol 52:293–304

    Google Scholar 

  • Li Y, Craven J, Schweig ES, Obermeier SF (1996) Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake-induced liquefaction? Geology 24:171–174

    Google Scholar 

  • Littke R, Scheck-Wenderoth M, Brix MR, Nelskamp S (2008) Subsidence, inversion and evolution of the thermal field. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds), Dynamics of complex intracontinental Basins—The Central European Basin System. Springer, Heidelberg, pp 125–141

  • Lohr T, Krawczk CM, Tanner DC, Samiee R, Endres H, Oncken O, Trappe H, Kukla PA (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res 19:579–597

    Google Scholar 

  • LØseth HL, Wensaas B, Arntsen N, Hovland M (2003) Gas and fluid inhjection triggering shallow mud mobilization in the Hordaland Group, North Sea. In: Van Rensbergen P, Hillis R, Maltman A, Morley C (eds) Subsurface sediment mobilization, Geol Soc London Spec Publ 216, pp 139–157

  • Lotze F (1929) Überschiebungs-, Abscherungs- und Zerrungstektonik bei der Osningfaltung. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1929:231–239

    Google Scholar 

  • Lotze F (1951) Neue Ergebnisse der Quartärgeologie Westfalens V. Zur Stratigraphie des Senne-Diluviums. N Jb Geol Paläont Mh 97–102

  • Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204

    Google Scholar 

  • Lowe DR, LoPiccolo RD (1974) The characteristics and origins of dish and pillar structures. J Sed Petrol 44:484–501

    Google Scholar 

  • Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798

    Google Scholar 

  • McKee ED, Douglass JR, Rittenhouse S (1971) Deformation of Lee-side Laminae in Eolian Dunes. GSA Bull 82:359–378

    Google Scholar 

  • Meier R, Grünthal G (1992) Eine Neubewertung des Erdbebens vom 3. September 1770 bei Alfhausen (Niedersachsen). Osnabrücker naturwissenschaftliche Mitteilungen 18:67–80

    Google Scholar 

  • Meier D, Kronberg P (1989) Klüftung in Sedimentgestein. Enke Verlag Stuttgart, p 116

  • Meinsen J, Winsemann J, Weitkamp A, Landmeyer N, Lenz A, Dölling A (2011) Middle Pleistocene (Saalian) lake outburst floods in the Münsterland Embayment (NW Germany): impacts and magnitudes. Quat Sci Rev 30:2597–2625

    Google Scholar 

  • Meinsen J, Winsemann J, Roskosch J, Brandes C, Frechen M, Dultz S, Böttcher J (2013) Climate control on the evolution of Late Pleistocene alluvial fan and aeolian sand-sheet systems in NW Germany. Boreas (in press)

  • Mills PC (1983) Genesis and diagnostic value of soft-sediment deformation structures—a review. Sed Geol 35:83–104

    Google Scholar 

  • Mörz T, Karlik EA, Kreiter S, Kopf A (2007) An experiment setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sed Geol 196:251–267

    Google Scholar 

  • Mol J, Vandenberghe J, Kasse K, Stel H (1993) Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. J Quat Sci 8:15–30

    Google Scholar 

  • Montenat C, Barrier P, d′Estevou PO, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196:5–30

    Google Scholar 

  • Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant’Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sed Geol 196:31–45

    Google Scholar 

  • Moretti M, Miguel J, Alfaro P, Walsh N (2001) Asymmetrical Soft-sediment Deformation Structures Triggered by Rapid Sedimentation in Turbiditic Deposits (Late Miocene, Guadix Basin, Southern Spain). Facies 44:283–294

    Google Scholar 

  • Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sed Res 66:43–57

    Google Scholar 

  • Murton JB (1996) Morphology and Paleoenvironmental significance of Quaternary sand veins, sand wedges, and composit wedges, Tuktoyaktuk coastlands, western arctic Canada. J Sed Res 66:17–25

    Google Scholar 

  • Murton JM, French HM (1993) Thermokarst involutions, Summer Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Permafrost Periglac Process 4:217–229

    Google Scholar 

  • Neumann-Mahlkau P (1976) Recent sand volcanoes in the sand of a dike under construction. Sedimentology 23:421–425

    Google Scholar 

  • Neurautter TW, Roberts HH (1994) Three generations of mud volcanoes on the Louisiana continental slope. Geo-Mar Lett 14:120–125

    Google Scholar 

  • Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41:233–253

    Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76

    Google Scholar 

  • Obermeier SF (2009) Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In: McCalpin JP (ed) Paleoseismology. International Geophysics Series, 95, Elsevier, Amsterdam, pp 497–564

  • Obermeier SF, Gohn GS, Weems RE, Gelinas RL, Rubin M (1985) Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science 277:408–410

    Google Scholar 

  • Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:209–234

    Google Scholar 

  • Oliveira CMM, Hodgson DM, Flint SS (2009) Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology 56:1201–1225

    Google Scholar 

  • Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y, Okamura M, Yasuda S (2011) Comparison of liquefaction features observed during the 2010 and 2011 Canterbury Earthquakes. Seis Res Lett 82:905–918

    Google Scholar 

  • Otto V (2003) Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123

    Google Scholar 

  • Owen G (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43:279–293

    Google Scholar 

  • Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sed Geol 235:141–147

    Google Scholar 

  • Papadopoulos GA, Lefkopoulos G (1993) Magnitude-Distance relation for liquefaction in soil from earthquakes. Bull Seis Soc Am 83:925–938

    Google Scholar 

  • Peterson RA, Walker DA, Romanovsky VE, Knudson JA, Raynolds MK (2003) A different frost heave model: cryoturbation-vegetation interactions. In: Phillips M, Springmann SM, Arenson LU (eds) Permafrost: proceedings of the 8th international conference on Permafrost: proceedings of the 8th international conference on Permafrost, Zurich, Switzerland, 21–25 July 2003, pp 885–890

  • Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344

    Google Scholar 

  • Prange W (1995) Kleintektonische Untersuchungen in Lockersedimenten. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 65:47–65

    Google Scholar 

  • Pringle JK, Westerman AR, Stanbrook DA, Tatum DI, Gardine AR (2007) Sand volcanoes of the Carboniferous Ross Formation, County Clare, Western Ireland: 3-D internal sedimentary structure and formation. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production. AAPG Memoir, 87, Tulsa, pp 227–231

  • Ringrose PS (1989) Palaeoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova 1:57–62

    Google Scholar 

  • Rodrigues N, Cobbold PR, Løseth H (2009) Physical modeling of sand injectites. Tectonophysics 474:610–632

    Google Scholar 

  • Rodríguez-López JP, Meléndez N, De Boer PL, Soria AR (2010) The action of wind in a mid-Cretaceous subtropical erg-margin system close to the Variscan Iberian Massif, Spain. Sedimentology 57:1315–1356

    Google Scholar 

  • Rosenfeld U (1983) Beobachtungen und Gedanken zur Osningtektonik. N Jb Geol Paläont 166:72–95

    Google Scholar 

  • Roskosch J, Tsukamoto S, Meinsen J, Frechen M, Winsemann J (2012) OSL dating of an upper Pleistocene fluvial-aeolian complex: the upper Senne of the Münsterland Embayment. Quat Geochron 10:94–101

    Google Scholar 

  • Ross JA, Peakall J, Keevil GM (2011) An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology 58:1693–1715

    Google Scholar 

  • Saucier RT (1989) Evidence for episodic sand-blow activity during the 1811–1812 New Madrid (Missouri) earthquake series. Geology 17:103–106

    Google Scholar 

  • Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299

    Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics 397:143–165

    Google Scholar 

  • Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159

    Google Scholar 

  • Selsing L (1981) Stress analysis on conjugate normal faults in unconsolidated Weichselian glacial sediments from Brorfelde, Denmark. Boreas 10:275–279

    Google Scholar 

  • Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896

    Google Scholar 

  • Seraphim ET (1978) Erdgeschichte, Landschaftsformen und geomorphologische Gliederung der Senne. In: Seraphim ET (ed) Beiträge zur Ökologie der Senne 1. Teil:7–24

  • Seraphim ET (1979) Der sog. Senne-Sander, eine Kame-Terrasse—Drenthestadiale Grundmoräne und post-moränale Schmelzwasser-Sedimente der Oberen Senne. Berichte des Naturwissenschaftlichen Vereins Bielefeld 24:319–344

    Google Scholar 

  • Sibson RH (1981) Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature 289:665–667

    Google Scholar 

  • Sieh KE (1978) Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. JGR 83:3907–3939

    Google Scholar 

  • Sims JD (1973) Determining earthquakes recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152

    Google Scholar 

  • Sims JD, Garvin CD (1995) Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull o Seis Soc Am 85:51–65

    Google Scholar 

  • Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the south-western margin of the Central European Basin System—Application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics 470:129–146

    Google Scholar 

  • Skupin K (1985) Senne. In: Geologisches Landesamt Nordrhein-Westfalen (ed) Geologische Karte von Nordrhein-Westfalen 1:100000—Erläuterungen zu Blatt C4318 Paderborn, Krefeld, pp 42–45

  • Skupin K (1994) Aufbau, Zusammensetzung und Alter der Flugsand- und Dünenbildungen im Bereich der Senne (östl. Münsterland). Geologie Paläontologie Westfalen 28:41–72

    Google Scholar 

  • Skupin K (2002) Geologische Karte von Nordrhein-Westfalen 1:100000–Erläuterungen zu Blatt C4314 Gütersloh, Krefeld, 120 pp

  • Stille H (1924) Die Osning-Überschiebung. Abhandlungen der preußischen geologischen Landesanstalt 95:32–56

    Google Scholar 

  • Stille H (1953) Zur Geschichte der Osning-Forschung. Geotektonische Forschung 9:1–6

    Google Scholar 

  • Sullwood HH (1959) Nomenclature of load deformation in turbidites. GSA Bull 70:1247–1248

    Google Scholar 

  • Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: evidence from pre-Hispanic seismic activity? Sed Geol 235:188–199

    Google Scholar 

  • Talwani P, Rajendran K (1991) Some seismological and geometric features of intraplate earthquakes. Tectonophysics 186:19–41

    Google Scholar 

  • Tsuji T, Miyata Y (1987) Fluidization and liquefaction of sand beds—experimental study and examples from Nichinan group. J Geol Soc Japan 93:791–808

    Google Scholar 

  • Tuttle MP, Schweig ES (1996) Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. JGR 101(B3):6171–6178

    Google Scholar 

  • Tuttle MP, Schweig ES, Sims JD, Lafferty RH, Wolf LW, Haynes ML (2002) The earthquake potential of the New Madrid Seismic Zone. Bull Seis Soc Am 92:2080–2089

    Google Scholar 

  • van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55

    Google Scholar 

  • van Loon AJ (2010) Sedimentary volcanoes: overview and implications for the definition of a volcano on earth. In: Canòn-Tapia E, Szakács A (eds) What is a volcano? GSA Special Paper 470, pp 31–41

  • van Loon AJ, Maulik P (2011) Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sed Geol 238:145–155

    Google Scholar 

  • van Wees JD, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59

    Google Scholar 

  • Vandenberghe J (1992) Cryoturbations: a sediment structural analysis. Permafrost Periglac Process 3:343–352

    Google Scholar 

  • Vandenberghe J, Pissart A (1993) Permafrost changes in Europe during the last glacial. Permafrost Periglac Process 4:121–135

    Google Scholar 

  • van Vliet-Lanoe B (1988) The significance of cryoturbation phenomena in environmental reconstruction. J Quat Sci 3:85–96

    Google Scholar 

  • Vogt J, Grünthal G (1994) Die Erdbebenfolge vom Herbst 1612 im Raum Bielefeld. Geowissenschaften 12:236–240

    Google Scholar 

  • Wang C-Y, Wong A, Dreger DS, Manga M (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seis Soc Am 96:355–363

    Google Scholar 

  • Washburn AL (1980) Permafrost features as evidence of climatic change. Earth-Sci Rev 15:327–402

    Google Scholar 

Download references

Acknowledgments

We would like to thank the owners of the Oerlinghausen and Augustdorf open sand pits for the permission to enter their property. We would like to thank G. Hoffmann and K. Reicherter for constructive reviews and A. Nelson for helpful comments on an earlier version of this manuscript. Ariana Osman is gratefully acknowledged for improving the English. Many thanks are due to Janine Meinsen, Jörg Lang and Julia Roskosch for help in the field. Jamie Buscher, Christoph Glotzbach, Andrea Hampel, Holger Steffen and David Tanner are gratefully acknowledged for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, C., Winsemann, J. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. Int J Earth Sci (Geol Rundsch) 102, 2255–2274 (2013). https://doi.org/10.1007/s00531-013-0914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0914-4

Keywords

Navigation