Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 5, pp 1337–1355 | Cite as

The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

  • Omeid RahmaniEmail author
  • Jafar Aali
  • Radzuan Junin
  • Hassan Mohseni
  • Eswaran Padmanabhan
  • Amin Azdarpour
  • Sahar Zarza
  • Mohsen Moayyed
  • Parviz Ghazanfari
Original Paper

Abstract

The origin of the oil in Barremian–Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000–1,044 m for the Kazhdumi Formation (Albian) and 1,157–1,230 m for the Gadvan Formation (Barremian–Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian–Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II–III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II–III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

Keywords

Source rock Cretaceous South pars oil layer Persian Gulf Kerogen 

Notes

Acknowledgments

The authors thank the Pars Oil and Gas Company for data preparation and materials for analyses and gratefully acknowledge the Universiti Teknologi Malaysia (UTM). We also appreciate the publications of “Elsevier” and “John Wiley and Sons” for permission of reusing and reprinting respective figures and tables based on the licences.

References

  1. Aali J, Rahmani O (2011) Evidences for secondary cracking of oil in South Pars field, Persian Gulf, Iran. J Petrol Sci Eng 76:85–92CrossRefGoogle Scholar
  2. Aali J, Rahmani O (2012) H2S-Origin in South Pars gas field from Persian Gulf, Iran. J Petrol Sci Eng 86–87:217–224CrossRefGoogle Scholar
  3. Aali J, Rahimpour–Bonab H, Kamali MR (2006) Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran. J Petrol Sci Eng 50:161–175CrossRefGoogle Scholar
  4. Abrams AM, Narimanov AA (1997) Geochemical evaluation of hydrocarbons and their potential sources in the western South Caspian depression, Republic of Azerbaijan. Mar Pet Geol 14:451–468CrossRefGoogle Scholar
  5. Akinlua A, Ajayi TR, Jarvie DM, Adeleke BB (2005) A re-appraisal of the application of RockEval pyrolysis to source rock studies in the Nigeria Delta. J Pet Geol 28(4):39–48CrossRefGoogle Scholar
  6. Al-Ameri TK (2011) Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Mar Pet Geol 28:880–894CrossRefGoogle Scholar
  7. Al-Husseini MI (2000) Origin of the Arabian Plate Structures: amar Collision and Najd Rift. GeoArabia 5:527–542Google Scholar
  8. Alshahran AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the middle east. Elsevier, NetherlandsGoogle Scholar
  9. Barker CE (1996) A comparison of vitrinite reflectance measurements made on whole-rock and dispersed organic matter concentrate mounts. Org Geochem 24(2):251–256CrossRefGoogle Scholar
  10. Behar F, Beaumont V, De Barros-Penteado HL (2001) Rock-Eval 6 technology: performances and developments. Oil and Gas Science and Technology. Revue de l’Institut Franc¸ais du Pétrole 56:111–134Google Scholar
  11. Bordenave ML, Burwood R (1990) Source rock distribution and maturation in the Zagros orogenic belt, provenance of the Asmari and Sarvak reservoirs oil accumulations. Org Geochem 16:369–387CrossRefGoogle Scholar
  12. Curiale JA (2008) Oil-source rock correlations–Limitations and recommendations. Org Geochem 39:1150–1161CrossRefGoogle Scholar
  13. Durand B (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Durand B (ed) Kerogen, insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 13–34Google Scholar
  14. Durand B, Espitalié J (1973) Evolution de la matie`re organique au cours de l’enfouissement des sédiments. Compte rendus de l’Académie des Sciences (Paris) 276:2253–2256Google Scholar
  15. Ebukanson EJ, Kinghorn RRF (1985) Kerogen facies in the major Jurassic mud rock formations of Southern England and the implication on the depositional environments of their precursors. J Pet Geol 8:435–462CrossRefGoogle Scholar
  16. Espitalié J, Bordenave ML (1993) Rock–Eval pyrolysis. In: Bordenave ML (ed) Applied petroleum geochemistry. Editions Technip, Paris, pp 237–261Google Scholar
  17. Espitalié J, Madec M, Tisssot B, Menning JJ, Leplate P (1977) Source rock characterization method for petroleum exploration. In: Proceeding of the 9th annual offshore technology conference, vol 3, pp 439–448Google Scholar
  18. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock Eval et ses applications. 2de partie. Revue de l’lnstitut Franc¸ ais du Pétrole 40:755–784Google Scholar
  19. Ghasemi-Nejad E, Head MJ, Naderi M (2009) Palynology and petroleum potential of the Kazhdumi Formation (Cretaceous: Albian–Cenomanian) in the South Pars field, northern Persian Gulf. Mar Pet Geol 26:805–816CrossRefGoogle Scholar
  20. Grantham PJ, Wakefield LL (1988) Variations in the sterane carbon number distribution of marine source rocks derived crude oils through geological time. Org Geochem 12:61–74CrossRefGoogle Scholar
  21. Gürgey K (2003) Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasi fields, western South Caspian Basin: geochemical and multivariate statistical assessments. J Marine Petrol Geol 20:1119–1139CrossRefGoogle Scholar
  22. Hao F, Chen JY (1992) The cause and mechanism of vitrinite reflectance anomalies. J Pet Geol 15:419–434Google Scholar
  23. Hao F, Chen JY, Sun YC, Liu YZ (1993) Application of organic facies studies to sedimentary basin analysis case study from the Yitong Graben, China. Org Geochem 20:27–43CrossRefGoogle Scholar
  24. Hao F, Zhou X, Zhu Y, Bao X, Kong Q (2009) Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: origin and occurrence of crude oils. J Marine Petrol Geol 26:1528–1542CrossRefGoogle Scholar
  25. Hetényi M, Sajgó C, Vetö I, Brukner–Wein A, Szántó Z (2004) Organic matter in a low productivity anoxic intraplatform basin in the Triassic Tethys. Org Geochem 35:1201–1219CrossRefGoogle Scholar
  26. Himus GW (1951) Observations on the composition of kerogen rocks and the chemical constitution of kerogen. In: Second oil shale and cannel coal conference. Institute of Petroleum, London, pp 1–22Google Scholar
  27. Hunt JM (1996) Petroleum geochemistry and geology, 2ed. W.H. Freeman and Company, New YorkGoogle Scholar
  28. Kashfi MS (1992) Geology of the Permian ‘supergiant’ gas reservoirs in the greater Persian Gulf area. J Pet Geol 15:465–480Google Scholar
  29. Kashfi MS (2000) Greater Persian Gulf Permian–Triassic stratigraphic nomenclature requires study. Oil Gas J Tulsa 6:36–44Google Scholar
  30. Konert G, Afif AM, AL-Hajari SA, Droste H (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia 6(3):407–442Google Scholar
  31. Lafargue E, Marquis F, Pillot D (1998) Rock–Eval 6 applications in hydrocarbon exploration, production and soils contamination studies. Oil and Gas Science and Technology–Revue de l’Institut Franc¸ais du Pétrole 53:421–437Google Scholar
  32. Langford FF, Balanc-Valleron MM (1990) Interpreting Rock–Eval pyrolysis data using graphs of pyrolisable hydrocarbons vs. total organic carbon. AAPG Bull 74:799–804Google Scholar
  33. Langrock U, Stein R, Lipinski M, Brumsack HJ (2003) Late Jurassic to Early Cretaceous black shale formation and paleoenvironment in high northern latitudes-examples from the Norwegian–Greenland–Seaway. Paleoceanography 18(3). doi: 10.1029/2002PA000867
  34. Mahmoud MD, Vaslet D, Husseini MI (1992) The lower Silurian Qalibah formation of Saudi Arabia: an important hydrocarbon source rock. AAPG Bull 76:1491–1506Google Scholar
  35. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRefGoogle Scholar
  36. Milner P (1998) Source rock distribution and thermal maturity in the Southern Arabian Peninsula. GeoArabia 3(3):339–356Google Scholar
  37. Montero-Serrano JC, Martinez M, Riboulleau A, Tribovillard N, Márquez G, Gutiérrez-Martin JV (2010) Assessment of the oil source–rock potential of the Pedregoso Formation (Early Miocene) in the Falcón Basin of northwestern Venezuela. Mar Pet Geol 27(5):1107–1118CrossRefGoogle Scholar
  38. Mukhopadhyay PK (1994) Vitrinite reflectance as a maturity parameter. In: Vitrinite reflectance as a maturity parameter. Amer. Chem. SOC, Washington, DC, pp 1–24Google Scholar
  39. Mutterlose J, Brumsack HJ, Floegel S, Hay WW, Klein C, Langrock U, Lipinski M, Ricken W, Soeding E, Stein R, Swientek O (2003) The Norwegian–Greenland Seaway: a key area for understanding Late Jurassic to early cretaceous paleoenvironments. Paleoceanography 18(1). doi: 10.1029/2001PA000625
  40. Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation. Part III: modeling an open system. Mar Pet Geol 12:417–452CrossRefGoogle Scholar
  41. Pepper AS, Dodd TA (1995) Simple kinetic models of petroleum formation. Part II: oil–gas cracking. Mar Pet Geol 12:321–340CrossRefGoogle Scholar
  42. Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–329Google Scholar
  43. Peters KE, Cassa MR (1994) Applied source–rock geochemistry. In: Magoon LB, Dow WG (eds) The petroleum system-from source to trap. Am Assoc Petrol Geol Memoir 60:93–120Google Scholar
  44. Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood CliffsGoogle Scholar
  45. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge, vol 2, p 1155Google Scholar
  46. Petersen H, Tru V, Nielsen L, Duc N, Nytoft H (2005) Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho Formation), onshore Song Hong Basin, northern Vietnam. J Petrol Geol 28:19–38CrossRefGoogle Scholar
  47. Rahimpour-Bonab H (2007) A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J Petrol Sci Eng 58:1–12CrossRefGoogle Scholar
  48. Rahmani O, Aali J, Mohseni H, Rahimpour-Bonab H, Zalaghaie S (2010) Organic geochemistry of Gadvan and Kazhdumi Formations (Cretaceous) in South Pars field, Persian Gulf, Iran. J Petrol Sci Eng 70:57–66CrossRefGoogle Scholar
  49. Schiefelbein C, Cameron N (1997) In: Frazer AJ et al (eds) Petroleum geology of Southeast Asia. Geol Soc Spec Publ 126:143–146Google Scholar
  50. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. GeoArabia Spec. Pub 2Google Scholar
  51. Snowdon LR, Powell TG (1982) Immature oil-condensate modification of hydrocarbon generation model for terrestrial organic matter. Am Assoc Pet Geol Bull 66:775–788Google Scholar
  52. Suggate PR (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. J Pet Geol 21:5–32CrossRefGoogle Scholar
  53. Sykes R, Snowdon LR (2002) Guidelines for assessing the petroleum potential of coaly source rocks using Rock–Eval pyrolysis. Org Geochem 33:1441–1455CrossRefGoogle Scholar
  54. Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B (2011) Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. CR Geosci 343:55–71CrossRefGoogle Scholar
  55. Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, BerlinGoogle Scholar
  56. Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. Am Assoc Pet Geol Bull 58:499–506Google Scholar
  57. Todd SP, Dunn ME, Barwise AJG (1997) Characterizing petroleum charge systems in the Tertiary of SE Asia. In: Fraser AJ et al (eds) Petroleum geology of Southeast Asia. Geol Soc Spec Publ 126:25–47Google Scholar
  58. Vandenbroucke M (2003) Kerogen: from types to models of chemical structure. Oil Gas Sci Technol Revue de l’Institut Français du Pétrole 58(2):243–269CrossRefGoogle Scholar
  59. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833CrossRefGoogle Scholar
  60. Volkman JK, Barrett SM, Blackburn SI (1999) Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Org Geochem 30:307–318CrossRefGoogle Scholar
  61. Wang QJ, Chen JY (1988) Oil and gas geochemistry. China University of Geosciences Press (in Chinese), WuhanGoogle Scholar
  62. Wang L, Wang C, Li Y, Zhu L, Wei Y (2011) Organic geochemistry of potential source rocks in the Tertiary Dingqinghu Formation, Nima basin, central Tibet. J Pet Geol 34(1):67–85CrossRefGoogle Scholar
  63. Whelan JK, Thompson–Rizer CL (1993) Chemical methods for assessing kerogen and protokerogen types and maturity. In: Engel MH, Macko SA (eds) Organic geochemistry-principles and applications. Plenum Press, New York, pp 289–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Omeid Rahmani
    • 1
    • 2
    Email author
  • Jafar Aali
    • 2
  • Radzuan Junin
    • 1
  • Hassan Mohseni
    • 3
  • Eswaran Padmanabhan
    • 4
  • Amin Azdarpour
    • 1
    • 8
  • Sahar Zarza
    • 2
    • 5
  • Mohsen Moayyed
    • 6
  • Parviz Ghazanfari
    • 7
  1. 1.Department of Petroleum Engineering, Faculty of Petroleum and Renewable Energy EngineeringUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Islamic Azad UniversityMahabadIran
  3. 3.Department of Geology, Faculty of Basic SciencesBu–Ali Sina UniversityHamadanIran
  4. 4.Department of Geosciences, Faculty of Geosciences and Petroleum EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  5. 5.Department of English Languages, Faculty of Modern Languages and CommunicationUniversiti Putra MalaysiaSelangor Darul EhsanMalaysia
  6. 6.Department of Geology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
  7. 7.Department of Geology, Faculty of SciencesIKh Int. UniversityGhazvinIran
  8. 8.Faculty of Chemical EngineeringUniversiti Teknologi MaraShah AlamMalaysia

Personalised recommendations