International Journal of Earth Sciences

, Volume 102, Issue 2, pp 385–400 | Cite as

Fault-controlled sedimentation in a progressively opening extensional basin: the Palaeoproterozoic Vargfors basin, Skellefte mining district, Sweden

  • Tobias E. BauerEmail author
  • Pietari Skyttä
  • Rodney L. Allen
  • Pär Weihed
Original Paper


The Vargfors basin in the central part of the Skellefte mining district is an inverted sedimentary basin within a Palaeoproterozoic (1.89 Ga) marine volcanic arc. The fault-segmented basin formed from upper-crustal extension and subsequent compression, following a period of intense sub-marine volcanism and VMS ore formation. New detailed mapping reveals variations in stratigraphy attributed to syn-extensional sedimentation, as well as provenance of conglomerate clasts associated with tectonic activity at the transition from extension to compression. The onset of fan delta to alluvial fan sedimentation associated with basin subsidence indicates that significant dip-slip displacement accommodating rapid uplift of the intrusive complex and/or subsidence of the adjacent volcano-sedimentary domain took place along a major fault zone at the southern margin of the intrusive complex. Subsidence of the Jörn intrusive complex and/or its burial by sedimentary units caused a break in erosion of the intrusion and favoured the deposition of a tonalite clast-barren conglomerate. Clast compositions of conglomerates show that the syn-extensional deposits become younger in the south-eastern parts of the basin, indicating that opening of the basin progressed from north-west to south-east. Subsequent basin inversion, associated with the accretion to the Karelian margin, involved reverse activation of the normal faults and development of related upright synclines. Progressive crustal shortening caused the formation of break-back faults accompanied by mafic volcanic activity that particularly affected the southern contact of the Jörn intrusive complex and the northern contact of the Vargfors basin.


Palaeoproterozoic Skellefte district Conglomerates Basin inversion Alluvial fan Facies analysis 



This work is part of the VINNOVA 4D-modelling project and the PROMINE project, financed by VINNOVA and Boliden Mineral AB and the European Union, respectively. Constructive comments from reviewer Peter Druschke and a second anonymous reviewer and the editor Wolf-Christian Dullo are much appreciated. The 4D-modelling workgroup is thanked for contributions and discussions. Dave Coller, Michael Stephens, and Tobias Hermansson are acknowledged for the interesting discussions and ideas. This is a publication of the Centre of Advanced Mining and Metallurgy (CAMM).


  1. Allen RL, Weihed P, Svenson S-Å (1996) Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden. Econ Geol 91:1022–1053CrossRefGoogle Scholar
  2. BABEL Working Group (1990) Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic Shield. Nature 348:34–38CrossRefGoogle Scholar
  3. BABEL Working Group (1993) Integrated seismic studies of the Baltic Shield using data in the Gulf of Bothnia region. Geophys J Int 112:305–324CrossRefGoogle Scholar
  4. Bauer T, Skyttä P, Allen RL, Weihed P (2009) 3-D modelling of the Central Skellefte District, Sweden. In: Smart science for exploration and mining: proceedings of the 10th Bienn SGA Meet Soc Geol Appl Min Depos, Townsville, Australia, pp 394–396Google Scholar
  5. Bauer TE, Skyttä P, Allen RL, Weihed P (2011) Syn-extensional faulting controlling structural inversion—insights from the Palaeoproterozoic Vargfors syncline, Skellefte mining district, Sweden. Precambrian Res 191:166–183CrossRefGoogle Scholar
  6. Bergman Weihed J (2001) Palaeoproterozoic deformation zones in the Skellefte and Arvidsjaur areas, northern Sweden. In: Weihed P (ed) Economic geology research, vol 1. Geol Survey Sweden C 833, pp 46–68Google Scholar
  7. Billström K, Weihed P (1996) Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte District, northern Sweden. Econ Geol 91:1054–1072CrossRefGoogle Scholar
  8. Blair TC, McPherson JG (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J Sediment Res 64:450–489Google Scholar
  9. Dehghannejad M, Bauer TE, Malehmir A, Juhlin C, Weihed P (2012) Crustal geometry of the central Skellefte district, northern Sweden—constraints from reflection seismic investigations. Tectonophysics 524–525:87–99CrossRefGoogle Scholar
  10. Dumas H (1986) Litho-facies of the metasedimentary formations in the central part of the Skellefte District. Licentiate thesis, Luleå University of TechnologyGoogle Scholar
  11. Gonzáles Roldán MJ (2010) Mineralogia, petrologia y geoquimica de intrusions sin-volcanicas en el distrito minero de Skellefte, norte de Suecia. Dissertation (in Spanish with English summary), Universidad de Huelva, SpainGoogle Scholar
  12. Högdahl K, Lundquist T (2009) Discussion on Successive ~1.94 Ga plutonism and ~1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: substantiation of the marginal basin accretion hypothesis of Svecofennian evolution by T. Skiöld and R.W.R. Rutland [Precambrian Res. 148: 181–204, 2006]. Precambrian Res 168:330–334Google Scholar
  13. Kathol B, Weihed P (eds) (2005) Description of regional geological and geophysical maps of the Skellefte District and surrounding areas. Geol Survey Sweden Ba 57Google Scholar
  14. Kathol B, Weihed P, Antal Lundin I, Bark G, Bergman Weihed J, Bergström U, Billström K, Björk L, Claesson L, Daniels J, Eliasson T, Frumerie M, Kero L, Kumpulainen RA, Lundström H, Lundström I, Mellqvist C, Petersson J, Skiöld T, Sträng T, Stølen L-K, Söderman J, Triumf C-A, Wikström A, Wikström T, Årebäck H (2005) Regional geological and geophysical maps of the Skellefte District and surrounding areas. Bedrock map. Geol Survey Sweden Ba 57:1Google Scholar
  15. Lahtinen R, Korja A, Nironen M (2004) Paleoproterozoic orogenic evolution of the Fennoscandian Shield at 1.92–1.77 Ga—the formation of a supercontinent. GFF 126:27Google Scholar
  16. Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian shield. Elsevier Sci BV, Amsterdam, pp 481–532CrossRefGoogle Scholar
  17. Lahtinen R, Garde AA, Melezhik V A (2008) Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31, vol 1, 20–28Google Scholar
  18. Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204CrossRefGoogle Scholar
  19. Lundqvist T, Vaasjoki M, Persson P-O (1998) U-Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and their implications for the Palaeoproterozoic evolution of the Basin. GFF 120:357–363CrossRefGoogle Scholar
  20. Lundström I, Vaasjoki M, Bergström U, Antal I, Strandman F (1997) Radiometric age determinations of plutonic rocks in the Boliden area: the Hobergsliden granite and the Stavaträsk diorite. In: Lundqvist T (ed) Radiometric dating results 3. Sveriges geologiska undersökning C 830, pp 20–30Google Scholar
  21. Lundström I, Persson P-O, Bergström U (1999) Indications of early deformational events in the north-eastern part of the Skellefte field. Indirect evidence from geological and radiometric data from the Stavaträsk-Klintån area, Boliden map-sheet. In: Bergman S (ed) Radiometric dating results 4. Sveriges geologiska undersökning C 831, pp 52–69Google Scholar
  22. Malehmir A, Tryggvason A, Juhlin C, Rodriquez-Tablante J, Weihed P (2006) Seismic imaging and potential field modelling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden. Tectonophysics 426:319–334CrossRefGoogle Scholar
  23. Malehmir A, Tryggvason A, Lickorish H, Weihed P (2007) Regional structural profiles in the western part of the Palaeoproterozoic Skellefte Ore District, northern Sweden. Precambrian Res 159:1–18CrossRefGoogle Scholar
  24. Mellqvist C, Öhlander B, Skiöld T, Wikström A (1999) The Archaean-Proterozoic Paleoboundary in the Luleå area, northern Sweden: field and isotope geochemical evidence for a sharp terrane boundary. Precambrian Res 96:225–243CrossRefGoogle Scholar
  25. Miall AD (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall AD (ed) Fluvial sedimentology. Canadian Soc Petroleum Geol, Memoir 5, pp 597–604Google Scholar
  26. Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer, BerlinGoogle Scholar
  27. Montelius C (2005) The genetic relationship between rhyolitic volcanism and Zn-Cu-Au deposits in the Maurliden Volcanic Centre, Skellefte District, Sweden: volcanic facies, lithogeochemistry and geochronology. PhD thesis, Luleå University of Technology, Sweden, p 15Google Scholar
  28. Montelius C, Allen RL, Svenson S-Å, Weihed P (2007) Facies architecture of the Palaeoproterozoic VMS-bearing Maurliden volcanic centre, Skellefte district, Sweden. GFF 129:177–196CrossRefGoogle Scholar
  29. Neves MA, Morales N, Saad AR (2005) Facies analysis of tertiary alluvial fan deposits in the Jundiaí region, São Paulo, southeastern Brazil. J South Am Earth Sci 19:513–524CrossRefGoogle Scholar
  30. Nielsen H (1982) Alluvial fan deposits. In: Scholle PA, Spearing D (eds) Sandstone depositional environments. American Assoc Petroleum Geol, OklahomaGoogle Scholar
  31. Pettijohn FJ (1975) Sedimentary rocks. Harper & Row, New YorkGoogle Scholar
  32. Rasmussen TM, Roberts RG, Pedersen LB (1987) Magnetotellurics along the Fennoscandian long range profile. Geophys J R Astron Soc 89:799–820CrossRefGoogle Scholar
  33. Rutland RWR, Kero L, Nilsson G, Stølen LK (2001a) Nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden. Precambrian Res 112:211–237CrossRefGoogle Scholar
  34. Rutland RWR, Skiöld T, Page RW (2001b) Age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer. Precambrian Res 112:239–259CrossRefGoogle Scholar
  35. Seibold E, Berger WH (1996) The sea floor: an introduction to marine geology. Springer, BerlinGoogle Scholar
  36. Skiöld T (1988) Implications of new U-Pb zircon chronology to early Proterozoic crustal accretion in northern Sweden. Precambrian Res 38:147–164CrossRefGoogle Scholar
  37. Skiöld T, Rutland RWR (2006) Successive 1.94 Ga plutonism and 1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: substantiation of the marginal basin accretion hypothesis of Svecofennian evolution. Precambrian Res 148:181–204CrossRefGoogle Scholar
  38. Skiöld T, Öhlander B, Markkula H, Widenfalk L, Claesson LÅ (1993) Chronology of Proterozoic orogenic processes at the Archaean continental margin in northern Sweden. Precambrian Res 64:225–238CrossRefGoogle Scholar
  39. Skyttä P, Hermansson T, Elming S-Å, Bauer T (2010) Magnetic fabrics as constraints on the kinematic history of a pre-tectonic granitoid intrusion, Kristineberg, northern Sweden. J Struct Geol 32:1125–1136CrossRefGoogle Scholar
  40. Skyttä P, Hermansson T, Andersson J, Whitehouse M, Weihed P (2011) New zircon data supporting models of short-lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield. Solid Earth 2:205–217CrossRefGoogle Scholar
  41. Skyttä P, Bauer TE, Tavakoli S, Hermansson T, Andersson J, Weihed P (2012) Pre-1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden. Precambrian Res 206–207:109–136CrossRefGoogle Scholar
  42. Tryggvason A, Malehmir A, Rodiquez-Tablante J, Juhlin C, Weihed P (2006) Reflection seismic investigations in the western part of the Palaeoproterozoic VHMS bearing Skellefte District, northern Sweden. Econ Geol 101:1039–1054CrossRefGoogle Scholar
  43. Weihed P (2003) A discussion on papers “nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden” by Rutland et al. (Precambrian Res 11: 211–237, 2001) and “age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer” by Rutland et al. (Precambrian Res 112: 239–259, 2001). Precambrian Res 212:141–147Google Scholar
  44. Weihed P, Billström K, Persson P-O, Bergman Weihed J (2002) Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. GFF 124:163–180CrossRefGoogle Scholar
  45. Weihed P, Arndt N, Billström K, Duchesne J-C, Eilu P, Martinsson O, Papunen H, Lahtinen R (2005) Precambrian geodynamics and ore formation: the Fennoscandian shield. Ore Geol Rev 27:273–322CrossRefGoogle Scholar
  46. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar
  47. Wilson MR, Claesson L-Å, Sehlstedt S, Smellie JAT, Aftalion M, Hamilton PJ, Fallick AE (1987) Jörn: an early Proterozoic intrusive complex in a volcanic-arc environment, north Sweden. Precambrian Res 36:201–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tobias E. Bauer
    • 1
    Email author
  • Pietari Skyttä
    • 1
  • Rodney L. Allen
    • 1
    • 2
  • Pär Weihed
    • 1
  1. 1.Division of Geosciences and Environmental EngineeringLuleå University of TechnologyLuleåSweden
  2. 2.Boliden Mineral ABBolidenSweden

Personalised recommendations