Advertisement

International Journal of Earth Sciences

, Volume 102, Issue 2, pp 517–543 | Cite as

Basin formation during the post-collisional evolution of the Eastern Alps: the example of the Lavanttal Basin

  • Doris ReischenbacherEmail author
  • Reinhard F. Sachsenhofer
Original Paper

Abstract

The Miocene Lavanttal Basin formed in the Eastern Alps during extrusion of crustal blocks towards the east. In contrast to basins, which formed contemporaneously along the strike-slip faults of the Noric Depression and on top of the moving blocks (Styrian Basin), little is known about the Lavanttal Basin. In this paper geophysical, sedimentological, and structural data are used to study structure and evolution of the Lavanttal Basin. The eastern margin of the 2-km-deep basin is formed by the WNW trending Koralm Fault. The geometry of the gently dipping western basin flank shows that the present-day basin is only a remnant of a former significantly larger basin. Late Early (Karpatian) and early Middle Miocene (Badenian) pull-apart phases initiated basin formation and deposition of thick fluvial (Granitztal Beds), lacustrine, and marine (Mühldorf Fm.) sediments. The Mühldorf Fm. represents the Lower Badenian cycle TB2.4. Another flooding event caused brackish environments in late Middle Miocene (Early Sarmatian) time, whereas freshwater environments existed in Late Sarmatian time. The coal-bearing Sarmatian succession is subdivided into four fourth-order sequences. The number of sequences suggests that the effect of tectonic subsidence was overruled by sea-level fluctuations during Sarmatian time. Increased relief energy caused by Early Pannonian pull-apart activity initiated deposition of thick fluvial sediments. The present-day shape of the basin is a result of young (Plio-/Pleistocene) basin inversion. In contrast to the multi-stage Lavanttal Basin, basins along the Noric Depression show a single-stage history. Similarities between the Lavanttal and Styrian basins exist in Early Badenian and Early Sarmatian times.

Keywords

Miocene Carinthia Austria Structural geology Coal Sequence stratigraphy 

Notes

Acknowledgments

The authors wish to thank Gerhard Harer (HL-AG), Richard Otto (3G), and the Federal Government of Carinthia for providing a wealth of geological data, and Richard Otto, Gerald Pischinger (3G), and Wilfried Gruber (HOT) for valuable discussions on the Lavanttal Basin. We expand our thanks to Christian Schmid who offered a possibility to reprocess seismic lines at Joanneum Research (Leoben) to DR. Major parts of the work were performed using Petrel software, which was provided generously by Schlumberger within the frame of a software grant. We thank H.-G. Linzer, W.E. Piller, and W.-C. Dullo for their constructive critiques of the manuscript.

References

  1. Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian Basin. Glob Planet Change 58:165–180CrossRefGoogle Scholar
  2. Bassir SH (1964) Die Kohleföze des Lavanttales. Dissertation, Montanuniversitaet LeobenGoogle Scholar
  3. Bechtel A, Reischenbacher D, Sachsenhofer R, Gratzer R, Lücke A, Püttmann W (2007) Relations of petrographical and geochemical parameters in the middle Miocene Lavanttal lignite (Austria). Int J Coal Geol 70:325–349CrossRefGoogle Scholar
  4. Beck-Mannagetta P (1952) Zur Geologie und Paläontologie de Tertiärs des unteren Lavanttales. Jb Geol B-A 95:1–102Google Scholar
  5. Beck-Mannagetta P, Draxler I (1987) Zur stratigraphischen Bedeutung der neuen Fossilfunde auf dem Brenner-Sattel (Schönweg, Lavanttal). Jb Geol B-A 129:491–494Google Scholar
  6. Chwatal W, Freudenthaler A (2005) Reflexionsseismik 2005—Geothermie Mittleres Lavanttal. Technical report, SalzburgGoogle Scholar
  7. Cloetingh S, Matenco L, Bada G, Dinu C, Mocanu V (2005) The evolution of the Carpathians-Pannonian system: interaction between neotectonics, deep structure, polyphase orogeny and sedimentary basins in a source to sink natural laboratory. Tectonophysics 410:1–14CrossRefGoogle Scholar
  8. Decker K, Peresson H (1996) Tertiary kinematics in the Alpine-Carpathian-Pannonian system: links between thrusting, transform faulting and crustal extension. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic Thrustbelts of Central and Eastern Europe. EAGE, Special Publications, vol 5. Geological Society, London, pp 69–77Google Scholar
  9. Ebner F, Sachsenhofer RF (1995) Paleogeography, subsidence and thermal history of the Neogene Styrian Basin (Pannonian basin system, Austria). Tectonophysics 242:133–150CrossRefGoogle Scholar
  10. Egger M (2007) Strukturelle Analyse des Schwanberger Blockschutt Beckens im Hinblick auf die Achse des Koralm-Basistunnels. Master’s thesis, Graz University of TechnologyGoogle Scholar
  11. Feischl T (2001) Petrophysikalische Charakterisierung von Bohrkernen und deren Verwendbarkeit für die Indikation von tektonischen Trennflächen. Master’s thesis, Montanuniversitaet LeobenGoogle Scholar
  12. Frisch W, Dunkl I, Kuhlemann J (2000) Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics 327:239–265CrossRefGoogle Scholar
  13. Gamon JF (1983) Displacement features associated with fault zones: a comparison between observed and experimental models. J Struct Geol 5:33–45CrossRefGoogle Scholar
  14. Gruber W, Sachsenhofer RF (2001) Coal deposition in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int J Coal Geol 48:89–114CrossRefGoogle Scholar
  15. Handler R, Ebner F, Neubauer F, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from the Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carp 57:483–494Google Scholar
  16. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. SEPM Spec Publ 42:71–108Google Scholar
  17. Hardenbol J, Thierry J, Farley MB, Jaquin T, Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence Chronostratigraphic framework of European Basins. SEPM Spec Publ 60:3–13Google Scholar
  18. Harzhauser M, Piller WE (2004a) Integrated Stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1:65–86Google Scholar
  19. Harzhauser M, Piller WE (2004b) The Early Sarmatian—hidden seesaw changes. Courier Forschungsinstitut Senckenberg 246:89–111Google Scholar
  20. Hohenegger J, Rögl F, Coric S, Pervesler P, Lirer F, Rötzel R, Scholger R, Stingl K (2009) The Styrian Basin: a key to the middle Miocene (Badenian/Langhian) central Paratethys transgressions. Austrian J Earth Sci 102:102–132Google Scholar
  21. Holzer HF Pohl W (1980) Montangeologischer Endbericht über die Schurftiefbohrungen I/Schilting und II/Eitweg, Lavanttal, Kärnten. Unpublished reportGoogle Scholar
  22. Horvath F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266:287–300CrossRefGoogle Scholar
  23. ELGI (Eötvös Lorand Geofizikai Intezet) (1977) Geophysikalische Messungen im Lavanttal, Kärnten. Unpublished report, BudapestGoogle Scholar
  24. Kahler F (1953) Der Bau der Karawanken und des Klagenfurter Beckens. Carinthia II:5–78Google Scholar
  25. Kellermann H (2008) Petrographie und Geotechnik von Kataklasiten am Semmering. Master’s thesis, University of ViennaGoogle Scholar
  26. Klaus W (1956) Mikrosporenhorizonte in Süd- und Ostkärnten. Verh Geol B-A:250–255Google Scholar
  27. Kleinspehn KL, Pershing J, Teyssier Ch (1989) Paleostress stratigraphy: a new technique for analyzing tectonic control on sedimentary basin subsidence. Geology 17:253–256CrossRefGoogle Scholar
  28. Kuhlemann J, Scholz T, Frisch W (2003) Postcollisional stress field changes in Eastern Carinthia (Austria). Mitt Österr Geol Ges 94(2001):55–61Google Scholar
  29. Lambiase JJ (1990) A model for tectonic control of lacustrine stratigraphic sequences in continental rift basins. In: Katz BJ (ed) Lacustrine basin exploration. AAPG memoir, vol 50, pp 265–276Google Scholar
  30. Linzer H-G, Decker K, Peresson H, Dell’Mour R, Frisch W (1999) Balancing lateral orogenic float of the Eastern Alps. In: Thrust tectonic conference, 1999, London, pp 245–247Google Scholar
  31. Linzer H-G, Decker K, Peresson H, Dell’Mour R, Frisch W (2002) Balancing lateral orogenic float of the Eastern Alps. Tectonophysics 354(3–4):211–237CrossRefGoogle Scholar
  32. Lippolt HJ, Baranyi I, Todt W (1975) Das Kalium-Argon Alter des Basaltes von Kollnitz im Lavanttal. Der Aufschluss 26:238–242Google Scholar
  33. Nemes F, Neubauer F, Cloetingh S, Genser J (1997) The Klagenfurt basin in the Eastern Alps: an intra-orogenic decoupled flexural basin? Tectonophysics 282:189–203CrossRefGoogle Scholar
  34. Papp A (1951) Über die Altersstellung der Tertiärschichten von Liescha bei Prävali und Lobnig. Carinthia II 141:62–64Google Scholar
  35. Papp A (1954) Fazies und Gliederung des Sarmats im Wiener Becken. Mitt Geol Ges Wien 47:35–98Google Scholar
  36. Petit JP (1987) Criteria for sense of movement on fault surfaces in brittle rocks. J Struct Geol 9:597–608CrossRefGoogle Scholar
  37. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  38. Pischinger G, Kurz W, Übleis M, Egger M, Fritz H, Brosch FJ, Stingl K (2008) Fault slip analysis in the Koralm Massif (Eastern Alps) and consequences for the final uplift of „cold spots“ in Miocene times. Swiss J Geosci 101(1):235–254CrossRefGoogle Scholar
  39. Pohl W, Holzer H (1980a) Zwischenbericht über die Schurftiefbohrung I/Schilting, Lavanttal, Kärnten. Unpublished report, LeobenGoogle Scholar
  40. Pohl W, Holzer H (1980b) Bericht über die Schurftiefbohrung II Eitweg, Lavanttal, Kärnten. Unpublished report, LeobenGoogle Scholar
  41. Polinski RK (1992) Ein Modell der Tektonik der Karawanken, Südkärnten, Österreich. Diss. Univ. KarlsruheGoogle Scholar
  42. Polinski RK, Eisbacher GH (1992) Deformation partitioning during polyphase oblique convergence in the Karawanken Mountains, southeastern Alps. J Struct Geol 14:1203–1213CrossRefGoogle Scholar
  43. Popotnik A (2010) Kinematik und tektonische Geomorphologie der Lavanttal-Störung. Master’s thesis, University of ViennaGoogle Scholar
  44. Ratschbacher L, Frisch W, Linzer HG, Merle O (1991) Lateral extrusion in the Eastern Alps, 2. Structural analysis. Tectonics 10:257–271CrossRefGoogle Scholar
  45. Reischenbacher D, Rifelj H, Sachsenhofer RF, Jelen M, Ćorić S, Gross M, Reichenbacher B (2007) Early Badenian paleoenvironment in the Lavanttal Basin (Mühldorf Formation; Austria): evidence from geochemistry and paleontology. Austrian J Earth Sci 100:202–229Google Scholar
  46. Sachsenhofer RF, Sperl H, Wagini A (1996) Structure, development and hydrocarbon potential of the Styrian Basin. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic Thrustbelts and basins of the Central and Eastern Europe. EAGE Special Publications, vol 5, pp 393–414Google Scholar
  47. Sachsenhofer RF, Lankreijer A, Cloetingh S, Ebner F (1997) Subsidence analysis and quantitative basin modelling in the Styrian Basin (Pannonian Basin System, Austria). Tectonophysics 272:175–196CrossRefGoogle Scholar
  48. Sachsenhofer RF, Kogler A, Polesny H, Strauss W, Wagreich M (2000) The Neogene Fohnsdorf Basin: basin formation and basin inversion during lateral extrusion in the Eastern Alps (Austria). Int J Earth Sci 89:415–430CrossRefGoogle Scholar
  49. Sachsenhofer RF, Bechtel A, Reischenbacher D, Weiss A (2003) Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps) and implications on source rocks in pull-apart basins. Mar Pet Geol 20:83–110CrossRefGoogle Scholar
  50. Sachsenhofer RF, Gruber W, Dunkl I (2010) Das Miozän der Becken von Leoben und Fohnsdorf. J Alp Geol 53:9–38Google Scholar
  51. Schreilechner MG, Sachsenhofer RF (2007) High resolution sequence stratigraphy in the Eastern Styrian Basin (Miocene, Austria). Austrian J Earth Sci 100:164–184Google Scholar
  52. Strauss PH, Wagreich M, Decker K, Sachsenhofer RF (2001) Tectonics and sedimentation in the Fohnsdorf-Seckau Basin (Miocene, Austria): from a pull-apart basin to a half-graben. Int J Earth Sci 90:549–559CrossRefGoogle Scholar
  53. Tollmann A (1985) Geologie von Österreich, Band 2. Franz Deuticke, ViennaGoogle Scholar
  54. Turner FJ (1953) Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am J Sci 251:276–298CrossRefGoogle Scholar
  55. Vrabec M, Pavlovčič Prešeren P, Stopar P (2006) GPS study (1996–2002) of active deformation along the Periadriatic fault system in northeastern Slovenia: tectonic model. Geol Carpath 57(1):57–65Google Scholar
  56. Weber F, Schmöller R, Schmid Ch (1984) Grundlagenuntersuchungen zur Hochfrequenzseismik im Nahbereich. Unpublished report, LeobenGoogle Scholar
  57. Weber F, Schmöller R, Schmid Ch (1985) Reflexionsseismische Messungen mit hohem Auflösungsvermögen zur Strukturerkundung in der Braunkohle. Freib Forsch C408:20–37Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Doris Reischenbacher
    • 1
    Email author
  • Reinhard F. Sachsenhofer
    • 1
  1. 1.Department of Applied Geosciences and GeophysicsMontanuniversitaet LeobenLeobenAustria

Personalised recommendations