International Journal of Earth Sciences

, Volume 102, Issue 2, pp 493–515 | Cite as

Relative sea-level change, climate, and sequence boundaries: insights from the Kimmeridgian to Berriasian platform carbonates of Mount Salève (E France)

  • Telm Bover-ArnalEmail author
  • André Strasser
Original Paper


The present study analyses the stratal architecture of the Late Jurassic (Kimmeridgian) to Early Cretaceous (Berriasian) sedimentary succession of Mount Salève (E France), and four Berriasian stratigraphic intervals containing four sequence-boundary zones reflecting lowering trends of the relative sea-level evolution. Massive Kimmeridgian limestones characterized by the presence of colonial corals appear to be stacked in an aggrading pattern. These non-bedded thick deposits, which are interpreted to have formed in balance between relative sea-level rise and carbonate accumulation, suggest a keep-up transgressive system. Above, well-bedded Tithonian-to-Berriasian peritidal carbonates reflect a general loss of accommodation. These strata are interpreted as a highstand normal-regressive unit. During the early phase of this major normal regression, the vertical repetition of upper intertidal/lower supratidal lithofacies indicates an aggrading depositional system. This is in agreement with an early stage of a highstand phase of relative sea level. The Berriasian sequence-boundary zones investigated (up to 4 m thick) developed under different climatic conditions and correspond to higher-frequency, forced- and normal-regressive stages of relative sea-level changes. According to the classical sequence-stratigraphic principles, these sequence-boundary zones comprise more than one candidate surface for a sequence boundary. Three sequence-boundary zones studied in Early Berriasian rocks lack coarse siliciclastic grains, contain a calcrete crust, as well as marly levels with higher abundances of illite with respect to kaolinite, and exhibit fossilized algal-microbial laminites with desiccation polygons. These sedimentary features are consistent with more arid conditions. A sequence-boundary zone interpreted for the Late Berriasian corresponds to a coal horizon. The strata above and below this coal contain abundant quartz and marly intervals with a higher kaolinite content when compared to the illite content. Accordingly, this Late Berriasian sequence-boundary zone was formed under a more humid climate. The major transgressive–regressive cycle of relative sea level identified and the climate change from more arid to more humid conditions recognized during the Late Berriasian have been reported also from other European basins. Therefore, the Kimmeridgian to Berriasian carbonate succession of Mount Salève reflects major oceanographic and climatic changes affecting the northern margin of the Alpine Tethys ocean and thus constitutes a reliable comparative example for the analysis of other coeval sedimentary records. In addition, the stratigraphic intervals including sequence-boundary zones characterized in this study constitute potential outcrop analogues for sequence-boundary reflectors mapped on seismic profiles of subsurface peritidal carbonate successions. The detailed sedimentological analyses provided here highlight that on occasions the classical principles of sequence stratigraphy developed on seismic data are difficult to apply in outcrop. A sequence-boundary reflector when seen in outcrop may present successive subaerial exposure surfaces, which formed due to high-frequency sea-level changes that were superimposed on the longer-term trend of relative sea-level fall.


Berriasian Sequence stratigraphy Carbonate platform Sea-level change Palaeoclimate France 



We are grateful to Dan Bosence, Marc Aurell, and an anonymous reviewer for their careful reviews and constructive suggestions. Felix Schlagintweit and Carles Martín-Closas are thanked for having determined several fossil specimens. David Jaramillo-Vogel is acknowledged for fruitful discussions on the ideas presented in this paper. We would like to thank Lyndon A. Yose for providing information on the seismic transect from onshore Abu Dhabi shown in this paper. Financial support for this research was provided by the Swiss National Science Foundation grants no. 20-121545 and 20-137568.


  1. Alsharhan AS, Kendall CGStC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243CrossRefGoogle Scholar
  2. Aurell M, Bádenas B (2004) Facies and depositional sequence evolution controlled by high-frequency sea-level changes in a shallow-water carbonate ramp (late Kimmeridgian, NE Spain). Geol Mag 141:717–733CrossRefGoogle Scholar
  3. Bádenas B, Aurell M, Salas R (2004) Three orders of regional sea-level changes control facies and stacking patterns of shallow platform carbonates in the Maestrat Basin (Tithonian-Berriasian, NE Spain). Int J Earth Sci 93:144–162CrossRefGoogle Scholar
  4. Bernaus JM, Arnaud-Vanneau A, Caus E (2003) Carbonate platform sequence stratigraphy in a rapidly subsiding area: the Late Barremian-Early Aptian of the Organyà basin, Spanish Pyrenees. Sed Geol 159:177–201CrossRefGoogle Scholar
  5. Bernier P (1984) Les formations carbonatées du Kimméridgien et du Portlandien dans le Jura méridional. Stratigraphie, micropaléon-tologie et sédimentologie. Doc Lab Géol Lyon 92, 803 ppGoogle Scholar
  6. Booler J, Tucker ME (2002) Distribution and geometry of facies and early diagenesis: the key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees. Sed Geol 146:225–247CrossRefGoogle Scholar
  7. Borgomano JRF (2000) The Upper Cretaceous carbonates of the Gargano-Murge region, southern Italy: a model of platform-to-basin transition. AAPG Bull 84:1561–1588Google Scholar
  8. Boulila S, Galbrun B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112CrossRefGoogle Scholar
  9. Bover-Arnal T, Salas R, Moreno-Bedmar JA, Bitzer K (2009) Sequence stratigraphy and architecture of a late early–Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sed Geol 219:280–301CrossRefGoogle Scholar
  10. Bover-Arnal T, Moreno-Bedmar JA, Salas R, Skelton PW, Bitzer K, Gili E (2010) Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geol Acta 8:249–280Google Scholar
  11. Bover-Arnal T, Jaramillo-Vogel D, Showani A, Strasser A (2011) Late Eocene transgressive sedimentation in the western Swiss Alps: records of autochthonous and quasi-autochthonous biofacies on a karstic rocky shore. Palaeogeogr Palaeoclimatol Palaeoecol 312:24–39CrossRefGoogle Scholar
  12. Carozzi AV (1955) Sédimentation récifale rythmique dans le Jurassique supérieur du Grand-Salève. Geol Rundsch 43:433–446CrossRefGoogle Scholar
  13. Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gibling MR, Giles KA, Holbrook JM, Jordan R, Kendall CGStC, Macurda B, Martinsen OJ, Miall AD, Neal JE, Nummedal D, Pomar L, Posamentier HW, Pratt BR, Sarg JF, Shanley KW, Steel RJ, Strasser A, Tucker ME, Winker C (2009) Towards the standardization of sequence stratigraphy. Earth Sci Rev 92:1–33Google Scholar
  14. Clavel B, Charollais J, Busnardo R, Le Hégarat G (1986) Précisions stratigraphiques sur le Crétacé inférieur basal du Jura méridional. Eclogae Geol Helv 79:319–341Google Scholar
  15. Climent-Domènech H, Martín-Closas C, Salas R (2009) Charophyte-rich microfacies in the Barremian of the Eastern Iberian Chain (Spain). Facies 55:387–400CrossRefGoogle Scholar
  16. Coe AL, Bosence DWJ, Church KD, Flint SS, Howell JA, Wilson RCL (2003) The sedimentary record of sea-level change. Cambridge University Press and The Open University, Cambridge, p 288Google Scholar
  17. Colombié C, Rameil N (2007) Tethyan-to-boreal correlation in the Kimmeridgian using high-resolution sequence stratigraphy (Vocontian Basin, Swiss Jura, Boulonnais, Dorset). Int J Earth Sci 96:567–591CrossRefGoogle Scholar
  18. Colombié C, Strasser A (2005) Facies, cycles, and controls on the evolution of a keep-up carbonate platform (Kimmeridgian, Swiss Jura). Sedimentology 52:1207–1227CrossRefGoogle Scholar
  19. Curtis CD (1990) Aspects of climatic influence on the clay mineralogy and geochemistry of soils, paleosoils and clastic sedimentary rocks. J Geol Soc London 147:351–357CrossRefGoogle Scholar
  20. de Saussure H-B (1779–1796) Voyages dans les Alpes précédés d’un essai sur l’histoire naturelle des environs de Genève. Fauche-Borel, Neuchâtel, 4 volsGoogle Scholar
  21. Deconinck J-F, Strasser A (1987) Sedimentology, clay mineralogy and depositional environment of Purbeckian green marls (Swiss and French Jura). Eclogae Geol Helv 80:753–772Google Scholar
  22. Deville Q (1990) Chronostratigraphie et lithostratigraphie synthétique du Jurassique supérieur et du Crétacé inférieur de la partie méridionale du Grand Salève (Haute Savoie, France). Archs Sci Genève 31:215–235Google Scholar
  23. Deville Q (1991) Stratigraphie, sédimentologie et environnements de dépôts, et analyse séquentielle dans les terrains entre le Kimméridgien supérieur et le Valanginian du Mont-Salève (Haute Savoie, France). PhD thesis, Université de Genève, 141 ppGoogle Scholar
  24. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1:108–121Google Scholar
  25. Dunham RJ (1970) Keystone vugs in carbonate beach deposits. Am Assoc Pet Geol Bull 54:845Google Scholar
  26. El-Sayed MI (1999) Tidal flat rocks and sediments along the eastern coast of the United Arab Emirates. Carbonates Evaporites 14:106–120CrossRefGoogle Scholar
  27. Enay R (1965) Les formations coralliennes de Saint-Germain-de-Joux (Ain). Bull Soc Géol France 7:23–31Google Scholar
  28. Gorin GE, Signer C, Amberger G (1993) Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae Geol Helv 86:693–716Google Scholar
  29. Gourrat C, Masse J-P, Skelton PW (2003) Hypelasma salevensis (FAVRE, 1913) from the Upper Kimmeridgian of the French Jura, and the origin of the Rudist Family Requieniidae. Geol Croat 56:139–148Google Scholar
  30. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Häfeli C (1966) Die Jura/Kreide-Grenzschichten im Bielerseegebiet (Kt. Bern). Eclogae Geol Helv 59:565–696Google Scholar
  32. Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec Publ 60:3–13, charts 1–8Google Scholar
  33. Hardie LA (1977) Sedimentation on the modern carbonate tidal flats of northwest Andros Island, Bahamas. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Hillgärtner H (1998) Discontinuity surfaces on a shallow-marine carbonate platform (Berriasian, Valanginian, France and Switzerland). J Sediment Res 68:1093–1108CrossRefGoogle Scholar
  35. Hillgärtner H (1999) The evolution of the French Jura platform during the Late Berriasian to Early Valanginian: controlling factors and timing. GeoFocus 1:203Google Scholar
  36. Hillgärtner H, Strasser A (2003) Quantification of high-frequency sea-level fluctuations in shallow-water carbonates: an example from the Berriasian-Valanginian (French Jura). Palaeogeogr Palaeoclimatol Palaeoecol 200:43–63CrossRefGoogle Scholar
  37. Hunt D, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sed Geol 81:1–9CrossRefGoogle Scholar
  38. Immenhauser A (2005) High-rate sea-level change during the Mesozoic: new approaches to an old problem. Sed Geol 175:277–296CrossRefGoogle Scholar
  39. James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J Sediment Petrol 42:817–836Google Scholar
  40. Joukowsky E, Favre J (1913) Monographie géologique et paléontologique du Salève (Haute Savoie, France). Mém Soc Phys et Hist Nat Genève 37:295–523Google Scholar
  41. Le Hégarat G, Remane J (1968) Tithonique supérieur et Berriasien de l’Ardèche et de l’Hérault: corrélation des ammonites et des calpionelles. Géobios 1:7–70CrossRefGoogle Scholar
  42. Leeder MR, Harris T, Kirkby MJ (1998) Sediment supply and climate change: implications for basin stratigraphy. Basin Res 10:7–18CrossRefGoogle Scholar
  43. Lombard A (1967) Le Salève. In: Guide géologique de la Suisse 2:54–57Google Scholar
  44. Mojon P-O (1988) Contribution à l’étude micropaléontologique, paléoécologique et biostratigraphique des faciès “portlandiens” et “purbeckiens” (limite Jurassique-Crétacé) du Salève (Haute-Savoie, France). Arch Sci Genève 41:99–102Google Scholar
  45. Montañez IP, Osleger DA (1993) Parasequence stacking patterns, third-order accommodation events, and sequence stratigraphy of Middle to Upper Cambrian platform carbonates, Bonanza King Formation, southern Great Basin. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy. AAPG Mem 57:305–326Google Scholar
  46. Neal J, Abreu V (2009) Sequence stratigraphy hierarchy and the accommodation succession method. Geology 37:779–782CrossRefGoogle Scholar
  47. Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40:67–102CrossRefGoogle Scholar
  48. Pasquier J-B, Strasser A (1997) Platform-to-basin correlation by high-resolution sequence stratigraphy and cyclostratigraphy (Berriasian, Switzerland and France). Sedimentology 44:1071–1092CrossRefGoogle Scholar
  49. Praeg D (2003) Seismic imaging of mid-Pleistocene tunnel-valleys in the North Sea Basin—high resolution from low frequencies. J Appl Geophys 53:273–298CrossRefGoogle Scholar
  50. Pratt BR, James NP (1986) The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology 33:313–343CrossRefGoogle Scholar
  51. Price GD (1999) The evidence and implications of polar ice during the Mesozoic. Earth Sci Rev 48:183–210CrossRefGoogle Scholar
  52. Rameil N (2005) Carbonate sedimentology, sequence stratigraphy, and cyclostratigraphy of the Tithonian in the Swiss and French Jura Mountains. A high-resolution record of changes in sea level and climate. GeoFocus 13, 246 ppGoogle Scholar
  53. Robbin DM, Stipp JJ (1979) Depositional rate of laminated soilstone crust, Florida Keys. J Sediment Petrol 49:175–180Google Scholar
  54. Ruffell A, McKinley JM, Worden RH (2002) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philos Trans R Soc Lond A 360:675–693CrossRefGoogle Scholar
  55. Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Mem 77:459Google Scholar
  56. Shao L, Zhang P, Ren D, Lei J (1998) Late Permian coal-bearing carbonate successions in southern China: coal accumulation on carbonate platforms. Int J Coal Geol 37:235–256CrossRefGoogle Scholar
  57. Shinn EA, Lloyd RM, Ginsburg RN (1969) Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas. J Sediment Petrol 39:1202–1228Google Scholar
  58. Signer C, Gorin GE (1995) New geological observations between the Jura and the Alps in the Geneva area, as derived from reflection seismic data. Eclogae Geol Helv 88:235–265Google Scholar
  59. Spence GH, Tucker ME (2007) A proposed integrated multi-signature model for peritidal cycles in carbonates. J Sediment Res 77:797–808CrossRefGoogle Scholar
  60. Steinhauser N, Lombard A (1969) Définition de nouvelles unités lithostratigraphiques dans le Crétacé inférieur du Jura méridional (France). C R Soc Phys Hist Nat Genève 4:100–113Google Scholar
  61. Stephenson WJ, Naylor LA (2011) Geological controls on boulder production in a rock coast setting: insights from South Wales, UK. Mar Geol 283:12–24CrossRefGoogle Scholar
  62. Strasser A (1988) Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology 35:369–383CrossRefGoogle Scholar
  63. Strasser A (1994) Lagoonal-peritidal carbonate cyclicity: French Jura Mountains. In: de Boer PL, Smith DG (eds) Orbital forcing and cyclic sequences. IAS Spec Publ 19:285–301Google Scholar
  64. Strasser A, Davaud E (1983) Black pebbles of the Purbeckian (Swiss and French Jura): lithology, geochemistry and origin. Eclogae Geol Helv 76:551–580Google Scholar
  65. Strasser A, Davaud E (1986) Formation of Holocene limestone sequences by progradation, cementation and erosion: two examples from the Bahamas. J Sediment Petrol 56:422–428Google Scholar
  66. Strasser A, Hillgärtner H (1998) High-frequency sea-level fluctuations recorded on a shallow carbonate platform (Berriasian and Lower Valanginian of Mount Salève, French Jura). Eclogae Geol Helv 91:375–390Google Scholar
  67. Strasser A, Davaud E, Jedoui Y (1989) Carbonate cements in Holocene beachrock: example from Bahiret el Biban, southeastern Tunisia. Sed Geol 62:89–100CrossRefGoogle Scholar
  68. Strasser A, Pittet B, Hillgärtner H, Pasquier J-B (1999) Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sed Geol 128:201–221CrossRefGoogle Scholar
  69. Strasser A, Hillgärtner H, Hug W, Pittet B (2000) Third-order depositional sequences reflecting Milankovitch cyclicity. Terra Nova 12:303–311CrossRefGoogle Scholar
  70. Strasser A, Hillgärtner H, Pasquier J-B (2004) Cyclostratigraphic timing of sedimentary processes: an example from the Berriasian of the Swiss and French Jura Mountains. In: D’Argenio B, Fischer AG, Premoli Silva I, Weissert H, Ferreri V (eds) Cyclostratigraphy: approaches and case histories. SEPM Spec Publ 81:137–151Google Scholar
  71. Strasser A, Hilgen FJ, Heckel FH (2006) Cyclostratigraphy—concepts, definitions, and applications. Newsl Stratigr 42:75–114CrossRefGoogle Scholar
  72. Van Buchem FSP, Razin P, Homewood PH, Oterdoom WH, Philip J (2002) Stratigraphic organisation of carbonate ramps and organic-rich intrashelf basins: the Natih Formation (Middle Cretaceous) of Northern Oman. AAPG Bull 86:21–53Google Scholar
  73. Wright VP (1984) Peritidal carbonate facies models: a review. Geol J 19:309–325CrossRefGoogle Scholar
  74. Yose LA, Strohmenger CJ, Al-Hosani I, Bloch G, Al-Mehairi Y (2010) Sequence-stratigraphic evolution of an Aptian carbonate platform (Shu’aiba Formation), eastern Arabian Plate, onshore Abu Dhabi, United Arab Emirates. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian—Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Spec Publ 4:309–340Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Département de GéosciencesUniversité de FribourgFribourgSwitzerland

Personalised recommendations