International Journal of Earth Sciences

, Volume 103, Issue 7, pp 1765–1787 | Cite as

Morphology and geology of the continental shelf and upper slope of southern Central Chile (33°S–43°S)

  • David VölkerEmail author
  • Jacob Geersen
  • Eduardo Contreras-Reyes
  • Javier Sellanes
  • Silvio Pantoja
  • Wolfgang Rabbel
  • Martin Thorwart
  • Christian Reichert
  • Martin Block
  • Wilhelm Reimer Weinrebe
Original Paper


The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33°S–43°S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.


Southern Central Chile Bathymetry Shelf sedimentation Shelf basins Submarine faults Seismicity Fluid seepage 



Part of the research off Central Chile was funded by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) grants 1100166 (CMSA) and grant 1080623 (Mocha Island), to Javier Sellanes and Silvio Pantoja, respectively. The project SPOC (Subduction Processes off Chile) including the RV SONNE cruise SO161 was funded by the German Federal Ministry of Education and Research (BMBF) grant no. 03G0161A. We gratefully acknowledge the help of the Dpto. de Geofísica de la Subdirección Nacional de Geología de SERNAGEOMIN (Servicio Nacional de Geología y Minería de Chile) that provided us with a bathymetric grid of the shelf areas of Chile. Some figures were created with The Generic Mapping Tools (GMT). We are grateful for helpful comments and thorough reviews by Juan Díaz-Naveas and an anonymous second reviewer. This publication is contribution no. 226 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.


  1. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334CrossRefGoogle Scholar
  2. Atkinson LP, Valle-Levinson A, Figueroa D, Pol-Holz RD, Gallardo VA, Schneider W, Blanco JL, Schmidt M (2002) Oceanographic observations in Chilean coastal waters between Valdivia and Concepción. J Geophys Res 107. doi: 10.1029/2001JC000991
  3. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chilean margin. Tectonics 16:489–503CrossRefGoogle Scholar
  4. Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geol 272:26–48CrossRefGoogle Scholar
  5. Barrientos SE (2007) Earthquakes in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 263–287Google Scholar
  6. Barrientos SE, Ward SN (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598CrossRefGoogle Scholar
  7. Berger WH, Fischer K, Lai G, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. Scripps Inst Oceanogr 87–30:1–67Google Scholar
  8. Bilek SL (2010) Seismicity along the South American subduction zone: review of large earthquakes, tsunamis, and subduction zone complexity. Tectonophysics 495:2–14CrossRefGoogle Scholar
  9. Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the South-Chilean active margin: a Pleistocene–Holocene record of climate and tectonics. Earth Planet Sci Lett 268:526–539CrossRefGoogle Scholar
  10. Bohm M, Luth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, Wigger P (2002) The Southern Andes between 36 degrees and 40 degrees S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289CrossRefGoogle Scholar
  11. Brown KM, Bangs NL, Froelich PN, Kvenvolden KA (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet Sci Lett 139:471–483CrossRefGoogle Scholar
  12. Cáceres M, Valle-Levinson A, Atkinson L (2003) Observations of cross-channel structure of flow in an energetic tidal channel. J Geophys Res 108:3114CrossRefGoogle Scholar
  13. Caress DW, Spitzak SE, Chayes DN (1996) Software for multibeam sonars. Sea Technol 37:54–57Google Scholar
  14. Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics 319:129–149CrossRefGoogle Scholar
  15. Cifuentes IL (1989) The 1960 Chilean earthquakes. J Geophys Res 94:665–680CrossRefGoogle Scholar
  16. Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437:404–407CrossRefGoogle Scholar
  17. Contardo X, Cembrano J, Jensen A, Díaz-Naveas J (2008) Tectono-sedimentary evolution of marine slope basins in the Chilean forearc (33°30′–36°50′S): insights into their link with the subduction process. Tectonophysics 459:206–218CrossRefGoogle Scholar
  18. Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ~38°S. J Geophys Res 113. doi: 10.1029/2007JB005569
  19. Contreras-Reyes E, Flueh E, Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south-central Chile. Tectonics 29. doi: 10.1029/2010TC002734
  20. Daneri G, Dellarossa V, Quiñones R, Jacob B, Montero P, Ulloa O (2000) Primary production and community respiration in the Humboldt current system off Chile and associated oceanic areas. Marine Ecol Progr Series 197:41–49CrossRefGoogle Scholar
  21. Díaz-Naveas JL (1999) Sediment subduction and accretion at the Chilean Convergent Margin between 35°S and 40°S. PhD thesis, Christian-Albrechts University, KielGoogle Scholar
  22. Djurfeldt L (1989) Circulation and mixing in a coastal upwelling embayment; Gulf of Arauco, Chile. Cont Shelf Res 9:1003–1016CrossRefGoogle Scholar
  23. Dzierma Y, Thorwart M, Rabbel W, Siegmund C, Comte D, Bataille K, Iglesia P, and Prezzi C (2012) Seismicity near the slip maximum of the 1960 Mw 9.5 Valdivia earthquake (Chile): plate interface lock and active faults within the crust and subducted slab. J Geophys Res (submitted)Google Scholar
  24. Encinas A, Finger KL, Nielsen SN, Lavenu A, Buatois LA, Peterson DE, Le Roux JP (2008) Rapid and major coastal subsidence during the late Miocene in south-central Chile. J S Am Earth Sci 25:157–175CrossRefGoogle Scholar
  25. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A, Chap. 41. Academic Press, London, pp 665–690CrossRefGoogle Scholar
  26. Farías M, Vargas G, Tassara A, Carretier S, Baize S, Melnick D, Bataille K (2010) Land-level changes produced by the Mw 8.8 2010 Chilean earthquake. Science 329:916. doi: 10.1126/science.1192094
  27. Farías M, Comte D, Roecker S, Carrizo D, Pardo M (2011) Crustal extensional faulting triggered by the 2010 Chilean earthquake: the Pichilemu Seismic Sequence. Tectonics 30:TC6010Google Scholar
  28. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:1–33CrossRefGoogle Scholar
  29. Fekete BM, Vörösmarty CJ, Grabs W (2000) Global composite runoff fields based on observed river discharge and simulated water balances. Complex Systems Research Center, University of New Hampshire. UNH-GRDC Composite Runoff Fields v1.0Google Scholar
  30. Figueroa D, Moffat C (2000) On the influence of topography in the induction of coastal upwelling along the Chilean Coast. Geophys Res Lett 27:3905–3908CrossRefGoogle Scholar
  31. Flueh ER (1995) Fahrtbericht SO 103/cruise report SO 103, CONDOR 1 B. GEOMAR-Report 41:1–140 (Kiel)Google Scholar
  32. Flueh E, Bialas J (2008) RRS JAMES COOK Cruise Report JC23-A & B, IFM-GEOMAR, Kiel. doi: 10.3289/ifm-geomar_rep_20_2008
  33. Flueh E, Grevemeyer I (2005) FS SONNE Cruise Report SO 181 Tipteq - from the incoming plate to megathrust earthquakes. Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel 42:1–539. doi: 10.3289/IFM-GEOMAR_REP_42_2011
  34. Flueh ER, Vidal N, Ranero CR, Hojka A, von Huene R, Bialas J, Hinz K, Cordoba D, Danobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off- and onshore Valparaiso, Chile. Tectonophysics 288:251–263CrossRefGoogle Scholar
  35. Flueh E, Kopp C, Schreckenberger B (2002) RV SONNE Cruise Report SO161-1&4. GEOMAR Report 44:1–383Google Scholar
  36. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  37. Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz-Naveas J, Weinrebe WR (2011a) Active tectonics of the South Chilean marine forearc (35°S–40°S). Tectonics:TC3006. doi: 10.1029/2010TC002777
  38. Geersen J, Völker D, Behrmann JH, Reichert C, Krastel S (2011b) Pleistocene giant slope failures offshore Arauco Peninsula, Southern Chile. J Geol Soc 168(6):1237–1248. doi: 10.1144/0016-76492011-027 CrossRefGoogle Scholar
  39. Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: The Andes-Active subduction Orogeny. Springer, Berlin, pp 401–428Google Scholar
  40. González E (1989) Hydrocarbon resources in the coastal zone of Chile. In: Ericksen G (ed) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources, Houston, TX, pp 383–404Google Scholar
  41. Grevemeyer I, Diaz-Naveas JL, Ranero CR, Villinger HW (2003) Heat flow over the descending Nazca plate in central Chile, 32 degrees S to 41 degrees S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet Sci Lett 213:285–298CrossRefGoogle Scholar
  42. Haberland C, Rietbrock A, Lange D, Bataille K, Hofmann S (2006) Interaction between forearc and oceanic plate at the South-Central Chilean margin as seen in local seismic data. Geophys Res Lett 33:L23302. doi: 10.1029/2006GL028189 CrossRefGoogle Scholar
  43. Haberle SG, Lumley SH (1998) Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S. J Volcanol Geothermal Res 84:239–256CrossRefGoogle Scholar
  44. Hagen RA, Vergara H, Naar DF (1996) Morphology of San Antonio submarine canyon on the Central Chile forearc. Marine Geol 129:197–205CrossRefGoogle Scholar
  45. Haschke M, Sobel ER, Blisniuk P, Strecker MR, Warkus F (2006) Continental response to active ridge subduction. Geophys Res Lett 33:L15315CrossRefGoogle Scholar
  46. Hebbeln D (2001) PUCK: report and preliminary results of R/V Sonne Cruise SO 156, Valparaiso (Chile)-Talcahuano (Chile), March 29-May 14, 2001. Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen 182:1–195Google Scholar
  47. Hebbeln D, Wefer G (1995) Cruise Report of R/V SONNE Cruise 102, Valparaiso–Valparaiso, 9(May), pp 1995–28, June 1995. Berichte Fachbereich Geowissenschaften Universität Bremen 68:1–126Google Scholar
  48. Hebbeln D, Marchant M, Freudenthal T, Wefer G (2000) Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geol 164:119–137CrossRefGoogle Scholar
  49. Heberer B, Roeser G, Behrmann JH, Rahn M, Kopf AJ (2010) Holocene sediments from the Southern Chile Trench; a record of active margin magmatism, tectonics and palaeoseismicity. J Geol Soc Lond 167:539–553. doi: 10.1144/0016-76492009-015 CrossRefGoogle Scholar
  50. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32(3):201–204CrossRefGoogle Scholar
  51. Hervé FE, Munizaga F, Parada MA, Brook M, Pankhurst R, Spelling N, Drake R (1988) Granitoids of the coast range of central Chile: geochronology and geologic setting. S Am Earth Sci J 1:185–194CrossRefGoogle Scholar
  52. Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  53. Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. GSA Bull 95:45–54CrossRefGoogle Scholar
  54. Hoffmann JAJ (1975) Atlas climatico de America del Sur. World Meteorol OrganGoogle Scholar
  55. Huyer A, Knoll M, Paluszkiewicz T, Smith RL (1991) The Peru undercurrent—a study in variability. Deep-Sea Res Part A-Oceanogr Res Papers 38:S247–S271CrossRefGoogle Scholar
  56. Jessen GL, Pantoja S, Gutiérrez MH, Quiñones RA, González RR, Sellanes J, Kellermann M, Hinrichs K-U (2011) Methane in shallow cold seeps at Mocha Island off central Chile. Cont Shelf Res 31:574–581. doi: 10.1016/j.csr.2010.12.012 CrossRefGoogle Scholar
  57. Kastner M, Elderfield H, Martin JB (1991) Fluids in convergent margins—What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes. Philos Trans R Soc A 335(1638):243–259CrossRefGoogle Scholar
  58. Klaucke I, Weinrebe W, Linke P, Kläschen D, Bialas J (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Marine Lett 1–11. doi: 10.1007/s00367-012-0283-1
  59. Kukowski N, Oncken O (2006) Subduction Erosion—the”Normal” mode of fore-arc material transfer along the Chilean Margin? In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny. Springer, Berlin, pp 213–232Google Scholar
  60. Lamy F, Hebbeln D, Wefer G (1998) Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition. Geol Rundsch 87:477–494CrossRefGoogle Scholar
  61. Lamy F, Hebbeln D, Wefer G (1999) High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quat Res 51:83–93CrossRefGoogle Scholar
  62. Lamy F, Hebbeln D, Rohl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185:369–382CrossRefGoogle Scholar
  63. Lange D, Rietbrock A, Haberland C, Bataille K, Dahm T, Tillmann F, Flüh ER (2007) Seismicity and geometry of the South Chilean subduction zone (41.5°S-43.5°S): implications for controlling parameters. Geophys Res Lett 34:L06311. doi: 10.1029/2006GL029190 CrossRefGoogle Scholar
  64. Laursen J, Normark WR (2002) Late Quaternary evolution of the San Antonio submarine canyon in the central Chile forearc (similar to 33 degrees S). Marine Geol 188:365–390CrossRefGoogle Scholar
  65. Laursen J, Normark WR (2003) Impact of structural and autocyclic basin-floor topography on the depositional evolution of the deep-water Valparaiso forearc basin, central Chile. Basin Res 15:201–226CrossRefGoogle Scholar
  66. Laursen J, Scholl DW, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21:1038. doi: 10.1029/2001TC901023 CrossRefGoogle Scholar
  67. Linke P (2011) RV SONNE CRUISE SO-210 - ChiFlux- Identification and investigation of fluid flux, mass wasting and sediments in the forearc of the central Chilean subduction zone. Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel 44:1–107Google Scholar
  68. Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in Brittle Fore-Arc Wedges—a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny. Springer, Berlin, pp 237–262Google Scholar
  69. Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378. doi: 10.1785/gssrl.75.3.368 CrossRefGoogle Scholar
  70. López-Escobar L, Kilian R, Kempton PD, Tagiri M (1993) Petrography and geochemistry of quaternary rocks from the Southern Volcanic Zone of the Andes between 41° and 46°S, Chile. Rev Geol Chile 20(1):33–55Google Scholar
  71. Martin JB, Kastner M, Egeberg PK (1995), Origins of saline fluids at convergent margins. In: Taylor B, Natland JP (eds) Active margins and marginal basins of the Western Pacific, Geophys. Monogr. Ser, vol 88. AGU, Washington, DC, pp 219–239Google Scholar
  72. Melnick D, Echtler HP (2006a) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34:709–712. doi: 10.1130/G22440.1 CrossRefGoogle Scholar
  73. Melnick D, Echtler HP (2006b) Morphotectonic and geologic digital map compilations of the south-central Andes (36°–42°S). In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos M, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny, vol 1. Springer, Berlin, pp 565–568Google Scholar
  74. Melnick D, Bookhagen B, Echtler HP, Strecker MR (2006) Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S). GSA Bull 118:1463–1480. doi: 10.1130/B25865.1 CrossRefGoogle Scholar
  75. Melnick D, Bookhagen B, Strecker MR, Echtler HP (2009) Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J Geophys Res 114:B01407. doi: 10.1029/2008JB005788 Google Scholar
  76. Mix AC, Tiedemann R, Blum P, Shipboard P (2003) Initial reports, ODP-leg 202. Proc. ODP, Init. Repts., 202 [Online]Google Scholar
  77. Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29:579–582CrossRefGoogle Scholar
  78. Morales E (2003) Methane hydrates in the Chilean continental margin. Electr J Biotechnol 6(2):80–84CrossRefGoogle Scholar
  79. Mordojovic C (1974) Geology of a part of the Pacific margin of Chile. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 591–598Google Scholar
  80. Mordojovic C (1981) Sedimentary basins of Chilean Pacific offshore. In: Energy resources of the Pazific region, vol 12. American Association of Petroleum Geologists, pp 63–68Google Scholar
  81. Moreno MS, Bolte J, Klotz J, Melnick D (2009) Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake. Geophys Res Lett 36:L16310. doi: 10.1029/2009GL039276 CrossRefGoogle Scholar
  82. Moscoso E, Grevemeyer I, Contreras-Reyes E, Flueh ER, Dzierma Y, Rabbel W, Thorwart M (2011) Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data. Earth Planet Sci Lett 307:147–155. doi: 10.1016/j.epsl.2011.04.025 CrossRefGoogle Scholar
  83. Muñoz P, Lange CB, Gutiérrez D, Hebbeln D, Salamanca MA, Dezileau L, Reyss JL, Benninger LK (2004) Recent sedimentation and mass accumulation rates based on 210Pb along the Peru-Chile continental margin. Deep Sea Res 51:2523–2541CrossRefGoogle Scholar
  84. Naranjo JA, Stern CR (1998) Holocene explosive activity of Hudson Volcano, southern Andes. Bull Volcanol 59:291–306CrossRefGoogle Scholar
  85. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30′-45°S) of the Andean Southern Volcanic Zone. Revista Geológica de Chile 31:225–240Google Scholar
  86. Oliver PG, Sellanes J (2005) New species of Thyasiridae from a methane seepage area off Concepción, Chile. Zootaxa 1092:1–20Google Scholar
  87. Oncken O, Hindle D, Kley J,·Elger K, Victor P, Schemmann K (2006) Deformation of the Central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (Eds.): The Andes-Active subduction Orogeny. Springer, Berlin. doi: 10.1007/978-3-540-48684-8_1
  88. Pizarro O, Shaffer G, Dewitte B, Ramos M (2002) Dynamics of seasonal and interannual variability of the Peru-Chile Undercurrent. Geophys Res Lett 29(12):22-1–22-4. doi: 10.1029/2002GL014790 Google Scholar
  89. Quiroga E, Sellanes J (2009) Growth and size-structure of Stegophiura sp. (Echinodermata: Ophiuroidea) on the continental slope off central Chile: a comparison between cold seep and non-seep sites. J Marine Biol Assoc UK 89:421–428. doi: 10.1017/S0025315408002786 CrossRefGoogle Scholar
  90. Raitzsch M, Völker D, Heubeck C (2007) Neogene sedimentary and mass-wasting processes on the continental margin off south-central Chile inferred from dredge samples. Marine Geol 244:166–183. doi: 10.1016/j.margeo.2007.06.007 CrossRefGoogle Scholar
  91. Ranero CR, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the Chile convergent margin. In: Oncken O, Chong G, Franz PGG, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny. Frontiers in earth sciences. Springer, Berlin, pp 91–123Google Scholar
  92. Rauch K (2005) Cyclicity of Peru-Chile trench sediments between 36 degrees and 38 degrees S: a footprint of paleoclimatic variations? Geophys Res Lett 32. doi: 10.1029/2004GL022196
  93. Rehak K, Strecker MR, Echtler HP (2008) Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology 94:98–116. doi: 10.1016/j.geomorph.2007.05.002 CrossRefGoogle Scholar
  94. Reichert C (2002) Cruise Report SO161, leg 2&3, SPOC, subduction processes off Chile. BGR internal report, pp 1–154Google Scholar
  95. Rodrigo C (2010) Cañones submarinos en el margen continental chileno. In: Díaz-Naveas J, Frutos J (2010). Geología Marina de Chile. Comité Oceanográfico Nacional de Chile—Pontificia Universidad Católica de Valparaíso—Servicio Nacional de Geología y Minería de Chile 32–35Google Scholar
  96. Rodrigo C, González-Fernández A, Vera E (2009) Variability of the bottom-simulating reflector (BSR) and its association with tectonic structures in the Chilean margin between Arauco Gulf (37°S) and Valdivia (40°S). Marine Geophys Res 30:1–19. doi: 10.1007/s11001-009-9064-2 CrossRefGoogle Scholar
  97. Rosenau MR (2004) Tectonics of the southern Andean intra-arc zone (38°–42°S). PhD thesis, Freie Universität Berlin, pp 1–195Google Scholar
  98. Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25:TC4013. doi: 10.1029/2005TC001943
  99. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9(5):Q05S05. doi: 10.1029/2008GC001978 Google Scholar
  100. Sánchez M (2004) Evolución tectónica de Isla Mocha [38 20′ S, 73 55’W]: configuración de un sistema anómalo en el margen occidental de la cuenca de antearco de Arauco. MSc thesis, Universidad de Concepción, Concepción, pp 1–108Google Scholar
  101. Scherwath M, Contreras-Reyes E, Flueh ER, Grevemeyer I, Krabbenhoeft A, Papenberg C, Petersen CJ, Weinrebe RW (2009) Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modelling. Geophys J Int 179:579–600. doi: 10.1111/j.1365-246X.2009.04298.x CrossRefGoogle Scholar
  102. Scholz F, Hensen C, Schmidt M, Geersen J (2012) Organic matter cycling, submarine weathering and subduction dewatering across the central Chilean forearc (~36°S). Geochem Geophys Geosyst (submitted)Google Scholar
  103. Sellanes J, Krylova E (2005) A new species of Calyptogena (Bivalvia: Vesicomyidae) from a recently discovered methane seepage area of Concepcion Bay, Chile (~36°S). J Marine Biol Assoc UK 85(4):969–976CrossRefGoogle Scholar
  104. Sellanes J, Quiroga E, Gallardo VA (2004) First direct evidences of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile. J Marine Biol Assoc UK 84(5):1065–1066CrossRefGoogle Scholar
  105. Sellanes J, Quiroga E, Neira C (2008) Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile, ~36°S. ICES J Marine Sci J Conseil 65:1102–1111CrossRefGoogle Scholar
  106. Shaffer G, Salinas S, Pizarro O, Vega A, Hormanzabal S (1995) Currents in the deep ocean off Chile (30°S). Deep Sea Res 42:425–436CrossRefGoogle Scholar
  107. Shaffer G, Pizarro O, Djurfeldt L, Salinas S, Rutllant J (1997) Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991–92 El Nino. J Phys Oceanogr 27:217–235CrossRefGoogle Scholar
  108. Shaffer G, Hormazabal S, Pizarro O, Salinas S (1999) Seasonal and interannual variability of currents and temperature off central Chile. J Geophys Res 104:29951–29961CrossRefGoogle Scholar
  109. Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H (2006) Seismic images of accretive and erosive subduction zones from the Chilean Margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny. Springer, Berlin, pp 147–171Google Scholar
  110. Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Smithsonian Institution. Global Volcanism Program Digital Information Series, GVP-3, (
  111. Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215. doi: 10.1016/S0895-9811(98)00012-1 CrossRefGoogle Scholar
  112. Sruoga P, Llambías EJ, Fauqué L, Schonwandt D, Repol DG (2005) Volcanological and geochemical evolution of the Diamante Caldera–Maipo volcano complex in the southern Andes of Argentina (34°10′S). J S Am Earth Sci 19:399–414CrossRefGoogle Scholar
  113. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile 31:161–206CrossRefGoogle Scholar
  114. Stern CR, Moreno H, Lopez-Escobar L, Clavero JE, Lara LE, Naranjo JA, Parada MA, Skewes MA (2007) Chilean volcanoes. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London, London, pp 147–178Google Scholar
  115. Strub T, Mesias J, Montecino V, Rutllant J, Salinas S (1998) Coastal ocean circulation off western South America. Coastal segment. In: Robinson A, K Brink (eds) The Sea, vol 11. Wiley, New York, pp 273–313Google Scholar
  116. Stuardo J, Valdovinos C (1988) A new bathyal Calyptogena from the coast of central Chile (Bivalvia: Vesicomyidae). Venus 47:241–250Google Scholar
  117. Stuut J-BW, Kasten S, Lamy F, Hebbeln D (2007) Sources and modes of terrigenous sediment input to the Chilean continental slope. Quat Int Lacustrine Marine Arch Environ Variab Across S Am 161:67–76. doi: 10.1016/j.quaint.2006.10.041 Google Scholar
  118. Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 degrees S and 46 degrees S; an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173Google Scholar
  119. Thornburg TM, Kulm LD, Hussong DM (1990) Submarine-fan development in the Southern Chile trench—a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bull 102:1658–1680CrossRefGoogle Scholar
  120. Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A, Jørgensen BB (2005) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta 69:2767–2779CrossRefGoogle Scholar
  121. Vargas G, Farías M, Carretier S, Tassara A, Baize S, Melnick D (2011) Coastal uplift and tsunami effects associated to the 2010 Mw 8.8 Maule earthquake in Central Chile. Andean Geol 38:219–238Google Scholar
  122. Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru–Chile trench off central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-Active subduction Orogeny. Springer, Berlin, pp 193–216Google Scholar
  123. Völker D, Reichel T, Wiedicke M, Heubeck C (2008) Turbidites deposited on Southern Central Chilean seamounts: evidence for energetic turbidity currents. Marine Geol 251:15–31CrossRefGoogle Scholar
  124. Völker D, Weinrebe W, Behrmann JH, Bialas J, Klaeschen D (2009) Mass wasting at the base of the south central Chilean continental margin: the Reloca Slide. Adv Geosci 22:155–167CrossRefGoogle Scholar
  125. Völker D, Scholz F, Geersen J (2011) Analysis of submarine landsliding in the rupture area of the 27 February 2010 Maule earthquake, Central Chile. Marine Geol 288:79–89. doi: 10.1016/j.margeo.2011.08.003 CrossRefGoogle Scholar
  126. Völker D, Geersen J, Weinrebe W, Behrmann J (2012) Submarine mass wasting off Southern Central Chile: distribution and possible mechanisms of slope failure at an active continental margin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor JD, Strasser M (Eds) Submarine mass movements and their consequences V, pp 379–390Google Scholar
  127. von Huene R, Corvalan J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe RW, Klaeschen D, Naveas JLD, Harms G, Spiegler D, Biebow N, Locker S, Kruger D, Morales E, Vergara H, Yanez G, Valenzuela E, Wall R, Trinhammer P, Laursen J, Scholl D, Kay S, Dominguez S, Segl M, Beese D, Lamy F, Bialas J, Biegling A, Gerdom M, Hojka AM, Hoppenworth R, Husem S, Krastel S, Kulowski N, Morawe MP, Muñoz AED, Lefmann AK, Vidal NM, Zelt C, Hinz K, Block M, Damm V, Fritsch J, Neben S, Reichert C, Schreckenberger B (1997) Tectonic control of the subducting Juan Fernandez Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16:474–488Google Scholar
  128. Wang K, Hu Y, Bewis M, Kendrick E, Smalley R, Vargas RB, Lauria E (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst 8:Q10010. doi: 10.1029/2007GC001721 Google Scholar
  129. Weinrebe W, Schenk S (2006) FS Meteor Fahrtbericht/Cruise Report M67/1 CHILE-MARGIN-SURVEY Talcahuano (Chile)—Balboa (Panama) 20.02.-13.03.2006. Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel, 07:1–112. doi: 10.3289/ifm-geomar_rep_7_2006
  130. Weinrebe W, Flueh E, Hasert M, Behrmann J, Völker D, Geersen J, Ranero C, Diaz-Naveas J (2011). 16 years, 16 cruises, 1.6 billion soundings: a compilation of high-resolution multibeam Bathymetry of the active plate boundary along the Chilean Continental Margin. Abstract OS24A-06 presented at AGU Fall Meeting 2011, San Francisco, CAGoogle Scholar
  131. Wiedicke-Hombach M (2002) Fahrtbericht SO161-5 SPOC (Subduction Processes off Chile) BGR Hannover 1–120Google Scholar
  132. Willner AP (2005) Pressure-temperature evolution of a Late Palaeozoic paired metamorphic belt in north-central Chile (34 degrees-35 degrees 30′ S). J Petrol 46:1805–1833CrossRefGoogle Scholar
  133. Willner AP, Thomson SN, Kröner A, Wartho JA, Wijbrans JR, Hervé F (2005) Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in north-central Chile (34°–35°30’S). J Petrol 46:1835–1858CrossRefGoogle Scholar
  134. Zapata RA (2001) Estudio batimétrico del margen chileno. Master thesis, Universidad de Chile, Santiago de Chile, pp 1–113Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • David Völker
    • 1
    Email author
  • Jacob Geersen
    • 1
  • Eduardo Contreras-Reyes
    • 2
  • Javier Sellanes
    • 3
  • Silvio Pantoja
    • 4
  • Wolfgang Rabbel
    • 5
  • Martin Thorwart
    • 5
  • Christian Reichert
    • 6
  • Martin Block
    • 6
  • Wilhelm Reimer Weinrebe
    • 1
  1. 1.Collaborative Research Center (SFB) 574 at the GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Departamento de GeofísicaUniversidad de ChileSantiagoChile
  3. 3.Departamento de Biología MarinaUniversidad Católica del NorteCoquimboChile
  4. 4.Departamento de Oceanografía y Centro de Investigación Oceanográfica en el Pacífico Sur-OrientalUniversidad de ConcepciónConcepciónChile
  5. 5.Institute of GeosciencesCollaborative Research Center (SFB) 574 at the University of KielKielGermany
  6. 6.BGR HannoverHannoverGermany

Personalised recommendations