Skip to main content

Investigating the kinematics of local thrust sheet rotation in the limb of an orocline: a paleomagnetic and structural analysis of the Esla tectonic unit, Cantabrian–Asturian Arc, NW Iberia

Abstract

The Esla tectonic unit lies along the southern boundary of the Cantabrian–Asturian Arc, a highly curved foreland fold-thrust belt that was deformed during the final amalgamation of the Pangea supercontinent. Previous structural and paleomagnetic analyses of the Cantabrian–Asturian Arc suggest a two-stage tectonic history in which an originally linear belt was bent into its present configuration, creating an orocline. The Esla tectonic unit is a particularly complex region due to the interaction of rotating thrust sheets from the southern limb of the arc and the southward-directed thrusts of the Picos de Europa tectonic domain during late-stage north–south shortening and oroclinal bending. These structural interactions resulted in intense modification of early-phase thin-skinned tectonic structures that were previously affected by a deeper out-of-sequence antiformal stack that passively deformed the early thrust stack. A total of 75 paleomagnetic sites were collected from the Portilla and Santa Lucia formations, two carbonate passive-margin reef platform units from the middle Devonian. Similar to other regions of the Cantabrian–Asturian Arc, Esla Unit samples carry a secondary remanent magnetization that was acquired after initial thrusting and folding of Variscan deformation in the late Carboniferous. Protracted deformation during late-stage oroclinal bending caused reactivation of existing thrust sheets that include the Esla and younger Corniero and Valbuena thrusts. When combined with existing structural data and interpretations, these data indicate that the present-day sinuosity of the Esla Unit is the consequence of both secondary rotation of originally linear features in the western Esla exposures (e.g., frontal thrusts), and secondary modification and tightening of originally curvilinear features in the eastern Esla exposures (e.g., hanging-wall lateral/oblique ramps). Differences in structural style between the Esla and other tectonic units of the arc highlight the complex kinematics of oroclinal bending, which at the orogen-scale buckled an originally linear, north–south (in present-day coordinates) trending Cantabrian–Asturian thrust belt during the final stages of Pangea amalgamation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allerton S (1998) Geometry and kinematics of vertical-axis rotations in fold and thrust belts. Tectonophysics 299:15–30

    Article  Google Scholar 

  2. Alonso JL (1987) Sequences of thrusts and displacement transfer in the superposed duplexes of the Esla Nappe region (Cantabrian Zone, NW Spain). J Struct Geol 9:969–983

    Article  Google Scholar 

  3. Alonso JL (1989) Fold reactivation involving angular unconformable sequences—theoretical-analysis and natural examples from the Cantabrian Zone (northwest Spain). Tectonophysics 170:57–77

    Article  Google Scholar 

  4. Alonso JL, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geologica Acta 7:451–473

    Article  Google Scholar 

  5. Álvarez- Marrón J, Pérez-Estaún A (1988) Thin-skinned tectonics in the Ponga Region (Cantabria Zone, NW Spain). Geol Rundsch 77:539–550

    Article  Google Scholar 

  6. Alvarez-Marrón J (1995) Three-dimensional geometry and interference of fault-bend folds: examples from the Ponga Unit, Variscan Belt, NW Spain. J Struct Geol 17:549–560

    Article  Google Scholar 

  7. Aramburu C, Méndez-Bedia I, Arbizu M (2002) The lower paleozoic in the cantabrian zone (Cantabrian Mountains, NW Spain). In: García-López S, Bastida F (eds) Paleozoic conodonts from north Spain. Cuadernos del Museo Geominero 1:35–49

  8. Arboleya ML (1981) La estructura del Manto del Esla (Cordillera Cantábrica, León). Boletín Geológico y Minero XCII-I:19–40

  9. Bates MP (1989) Palaeomagnetic evidence for rotations and deformation in the Nogueras Zone, Central Southern Pyrenees, Spain. J Geol Soc Lond 146:459–476

    Article  Google Scholar 

  10. Bonhommet N, Cobbold PR, Perroud H, Richardson A (1981) Paleomagnetism and cross-folding in a key area of the Asturian Arc (Spain). J Geophys Res 86:1873–1887

    Article  Google Scholar 

  11. Butler RWH (1982) The terminology of structures in thrust belts. J Struct Geol 4:239–245

    Article  Google Scholar 

  12. Channell JET, Lowrie W, Medizza F, Alvarez W (1978) Palaeomagnetism and Tectonics in Umbria, Italy. Earth Planet Sci Lett 39:199–210

    Article  Google Scholar 

  13. Colmenero JR, Suárez-Ruiz I, Fernández-Suárez J, Barba P, Lorens T (2008) Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. Int J Coal Geol 76:3187–3204

    Article  Google Scholar 

  14. Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planet Int 13:260–267

    Article  Google Scholar 

  15. De Sitter LU (1965) The Hercynian Cantabrian orogen. Memoiria Geopaleontologia Università Ferrara 1:211–225

    Google Scholar 

  16. Demarest H (1983) Error analysis for the determination of tectonic rotation from paleomagnetic data. J Geophys Res 88:148–227

    Article  Google Scholar 

  17. Eldredge S, Van der Voo R (1988) Paleomagnetic study of thrust sheet rotations in the Helena and Wyoming salients of the Northern Rocky Mountains. In: Schmidt CJ (ed) Interaction of the rocky mountain foreland and the cordilleran thrust belt. Memoir Geol Soc Am 171:319–332

  18. Eldredge S, Bachtadse V, Van der Voo R (1985) Paleomagnetism and the orocline hypothesis. Tectonophysics 119:153–179

    Article  Google Scholar 

  19. Fernández LP, Fernández-Martínez EM, García-Ramos JC, Méndez-Bedia I, Soto F (1997) A sequential approach to the study of reefal facies in the Candás and Portilla Formations (Middle Devonian) of the Cantabrian Zone (NW Spain). Boletín de la Real Sociedad Española de Historia Natural (Geología) 92:23–33

    Google Scholar 

  20. Fisher R (1953) Dispersion on a sphere: proceedings of the royal society of London. Ser A Math Phys Sci 217:295–305

    Article  Google Scholar 

  21. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan Belt, vol 179. The Geological Society of London, Special Publication, pp 35–61

  22. Franke W, Matte P, Tait J (2005) Variscan orogeny: Europe. Elsevier Ltd., Amsterdam, pp 75–85

  23. García-Alcalde JL (1995) L’evolution paléogéographique pré-varisque de la Zone Cantabrique septentrional (Espagne). Revista Española de Paleontología 10:9–29

    Google Scholar 

  24. García-López S (2002) A stratigraphic overview of the Cantabrian Devonian (NW Spain). In: García-López S, Bastida F (eds) Paleozoic conodonts from north Spain. Cuadernos del Museo Geominero 1:51–59

  25. García-Ramos JC, Colmenero JR (1981) Evolución sedimentaria y paleogeográfica durante el Devónico en la Cordillera Cantábrica. Real Acad de Ciencias Exactas Físicas y Nat 2:61–76

    Google Scholar 

  26. Gasparrini M, Bakker RJ, Bechstädt T, Boni M (2003) Hot dolomites in a Variscan foreland belt: hydrothermal flow in the Cantabrian Zone (NW Spain). J Geochem Explor 78–79:501–507

    Article  Google Scholar 

  27. Gasparrini M, Bechstädt T, Boni M (2006) Massive hydrothermal dolomite in the southwestern Cantabrian Zone (Spain) and its relation to the late Variscan evolution. Mar Pet Geol 23:543–568

    Article  Google Scholar 

  28. Grubbs KL, Van der Voo R (1976) Structural deformation of the Idaho-Wyoming overthrust belt (USA), as determined by Triassic paleomagnetism. Tectonophysics 33:321–336

    Article  Google Scholar 

  29. Gutiérrez-Alonso G, Fernandez-Suarez J, Weil AB, Murphy JB, Nance RD, Corfu F, Johnston ST (2008) Self-subduction of the Pangaean global plate. Nat Geosci 1:549–553

    Article  Google Scholar 

  30. Hindle H, Burkhard M (1999) Strain, displacement and rotation associated with the formation of curvature on fold belts; the example of the Jura arc. J Struct Geol 21:1089–1101

    Article  Google Scholar 

  31. Hirt AM, Lowrie W, Julivert M, Arboleya ML (1992) Paleomagnetic results in support of a model for the origin of the Asturian Arc. Tectonophysics 213:321–339

    Article  Google Scholar 

  32. Hoffman KA, Day R (1978) Separation of multi-component NRM: a general method. Earth Planet Sci Lett 40:433–438

    Article  Google Scholar 

  33. Hofmann MH, Keller M (2006) Sequence stratigraphy and carbonate platform organization of the Devonian Santa Lucia Formation, Cantabrian Mountains, NW-Spain. Facies 52:149–167

    Article  Google Scholar 

  34. Irving E, Opdyke ND (1965) The paleomagnetism of the Bloomsburg redbeds and its possible application to the tectonic history of the Appalachians. Geophys J R Astron Soc 9:153–167

    Article  Google Scholar 

  35. Jackson M, Sun WW, Craddock JP (1992) The rock magnetic fingerprint of chemical remagnetization in midcontinental Paleozoic carbonates. Geophys Res Lett 19:781–784

    Article  Google Scholar 

  36. Julivert M (1960) Estudia geologico de la cuenca de Beleno. Valles altos del Sella, Ponga, Nalon y Esla de la Cordillera Cantabria. Boletin del Instituto Geológico y Minero de España 71:1–346

    Google Scholar 

  37. Julivert M (1971) Décollement tectonics in the Hercynian Cordillera of NW Spain. Am J Sci 270:1–29

    Article  Google Scholar 

  38. Julivert M, Arboleya ML (1984) A geometrical and kinematical approach to the nappe structure in an arcuate fold belt—the Cantabrian Nappes (Hercynian Chain, Nw Spain). J Struct Geol 6:499–519

    Article  Google Scholar 

  39. Julivert M, Marcos A (1973) Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain). Am J Sci 271:353–375

    Article  Google Scholar 

  40. Keller M (1997) Evolution and sequence stratigraphy of an early Devonian carbonate ramp, Cantabrian Mountains, Northern Spain. J Sediment Res 67:638–652

    Google Scholar 

  41. Keller M, Bahlburg H, Reuther CD, Weh A (2007) Flexural to broken foreland basin evolution as a result of Variscan collisional events in northwestern Spain. In: Hatcher RD, Carlson MP, McBride JH, Catalan JRM (eds) 4-D framework of continental crust, vol 200. Geological Society of America, Boulder, pp 489–510

    Chapter  Google Scholar 

  42. Keller M, Bahlburg H, Reuther C-D (2008) The transition from passive to active margin sedimentation in the Cantabrian Mountains, Northern Spain: Devonian or Carboniferous? Tectonophysics 461:414–427

    Article  Google Scholar 

  43. Kent D (1988) Further paleomagnetic evidence for oroclinal rotation in the central folded appalachians from the Bloomsburg and the Mauch Chunk formations. Tectonics 7:749–759

    Article  Google Scholar 

  44. Kent D, Opdyke ND (1985) Multicomponent magnetization from the Mississippian Mauch Chunk formation of the central Appalachians and their tectonic implications. J Geophys Res 90:5371–5383

    Article  Google Scholar 

  45. Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys J Roy Astron Soc 62:699–718

    Article  Google Scholar 

  46. Kollmeier JM, van der Pluijm BA, Van der Voo R (2000) Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, Northern Spain. Earth Planet Sci Lett 181:203–216

    Article  Google Scholar 

  47. Kotasek J, Krs M (1965) Palaeomagnetic study of tectonic rotation in the Carpathian mountains of Czechoslovakia. Palaeogeogr Palaeoclimatol Palaeoecol 1:39–49

    Article  Google Scholar 

  48. Lowrie W, Hirt AM (1986) Paleomagnetism in Arcuate Mountain Belts. In: The origin of arcs, Developments in Geotectonics 21. Elsevier, Amsterdam, pp 141–158

  49. MacDonald WD (1980) Net tectonic rotation, apparent tectonic rotation, and the structural tilt correction in paleomagnetic studies, in Norman Watkins memorial. J Geophys Res 85:3659–3669

    Article  Google Scholar 

  50. Malod JA, Mauffret A (1990) Iberian plate motions during the Mesozoic. Tectonophysics 184:261–278

    Article  Google Scholar 

  51. Marcos A, Pulgar JA (1982) An approach to the tectonostratigraphic evolution of the Cantabrian foreland thrust and fold belt, Hercynian Cordillera of NW Spain. Neues Jahrbuchlür Geologie und Palantologie Abhandlungen 163:256–260

    Google Scholar 

  52. Marquinez J (1978) Estudio geológico del sector SE de los Picos de Europa (Cordillera Cantábrica, NW de España). Trabajos de Geología Universidad de Oviedo 10:295–315

    Google Scholar 

  53. Marshak S (1988) Kinematics of orocline and arc formation in thin skinned orogens. Tectonics 7:73–86

    Article  Google Scholar 

  54. Marshak S (2004) Arcs, oroclines, salients, and syntaxes. The origin of map-view curvature in fold-thrust belts. In McClay KR (ed) Thrust tectonics and petroleum systems. Am Assoc Petrol Geol Mem 82:131–156

  55. Marshak S, Wilkerson MS, Hsui AT (1992) Generation of curved fold-thrust belts: insights from simple physical and analytical models. In: McClay K (ed) Thrust tectonics. Chapman and Hall, London, pp 83–92

  56. Martínez García E (1991) Hercynian synorogenic and postorogenic successions in the Cantabrian and Palentian zones, NW Spain. Comparison with other western European occurrences. Giorn Geol 53:209–228

    Google Scholar 

  57. Martínez-Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247

    Article  Google Scholar 

  58. Martínez-Catalán JR, Arenas R, Díaz García F, Gómez-Barreiro J, González Cuadra P, Abati J, Castiñeiras P, Fernández-Suárez J, Sánchez Martínez S, Andonaegui P, Gónzalez Clavijo E, Díez Montes A, Rubio Pascual FJ, Valle Aguado B (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. In: Hatcher Jr RD, Carlson MP, McBride JH, Martínez Catalán JR (eds) 4-D framework of continental, vol 200. Geological Society of America, Denver, pp 403–423

  59. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  60. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  61. McCabe C, Channell JET (1994) Late Paleozoic remagnetization in limestones of the Craven Basin (northern England) and the rock magnetic fingerprint of remagnetized sedimentary carbonates. J Geophys Res 99:4603–4612

    Article  Google Scholar 

  62. McCaig AM, McClelland E (1992) Palaeomagnetic techniques applied to thrust belts. In: McClay K (ed) Thrust tectonics. Chapman and Hall, London, pp 209–216

    Chapter  Google Scholar 

  63. McElhinny MW (1964) Statistical significance of the fold test in paleomagnetism. R Astron Soc Geophys J 8:338–340

    Article  Google Scholar 

  64. Méndez-Bedia I (1976) Biofacies y litofacies de la formación Moniello-Santa Lucía (Devónico de la Cordillera Cantábrica, NW de España). Trabajos de Geología Universidad de Oviedo 9:93 pp

  65. Méndez-Bedia I, Soto F, Fernández Martínez E (1994) Devonian reef types in the Cantabrian Mountains (NW Spain) and their faunal composition. Courier Forschungsinstitut Senckenberg 172:161–183

    Google Scholar 

  66. Merino-Tomé OA, Bahamonde JR, Colmenero JR, Heredia N, Villa E, Farias P (2009) Emplacement of the Cuera and Picos de Europa imbricate system at the core of the Iberian-Armorican arc (Cantabrian zone, north Spain): new precisions concerning the timing of arc closure. Geol Soc Am Bull 121:729–751

    Article  Google Scholar 

  67. Miller JD, Kent DV (1986a) Paleomagnetic of the Upper Devonian catskill formation from the southern limb of the Pennsylvania Salient: possible evidence of oroclinal rotation. Geophys Res Lett 13:1173–1176

    Article  Google Scholar 

  68. Miller JD, Kent DV (1986b) Synfolding and prefolding magnetizations in the upper Devonian Catskill formation of eastern Pennsylvania: implication for the tectonic history of Acadia. J Geophys Res 91:12791–12803

    Google Scholar 

  69. Molina-Garza RS, Zijderveld JDA (1996) Paleomagnetism of Paleozoic strata, Brabant and Ardennes Massifs, Belgium: implications of prefolding and postfolding Late Carboniferous secondary magnetizations for European polar wander. J Geophys Res 101:15799–15818

    Google Scholar 

  70. Muttoni G, Argnani A, Kent DV, Abrahamsen N, Cibin U (1998) Paleomagnetic evidence for Neogene tectonic rotations in the northern Apennines, Italy. Earth Planet Sci Lett 154:25–40

    Article  Google Scholar 

  71. Muttoni G, Lanci L, Argnani A, Hirt AM, Cibin U, Abrahamsen N, Lowrie W (2000) Paleomagnetic evidence for a Neogene two-phase counterclockwise tectonic rotation in the Northern Apennines (Italy). Tectonophysics 326:241–253

    Article  Google Scholar 

  72. Parés JM, Van der Voo R, Stamatakos J, Pérez-Estaún A (1994) Remagnetizations and postfolding oroclinal rotations in the Cantabrian/Asturian arc, Northern Spain. Tectonics 13:1461–1471

    Article  Google Scholar 

  73. Pastor-Galán D, Gutiérrez-Alonso G, Meere PA, Mulchrone KF (2009) Factors affecting finite strain estimation in low-grade, low-strain clastic rocks. J Struct Geol 31:1586–1596

    Article  Google Scholar 

  74. Pastor-Galán D, Gutierréz-Alonso G, Weil AB (2011) Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics 507:31–46

    Article  Google Scholar 

  75. Pastor-Galán D, Gutiérrez-Alonso G, Mulchrone KF, Huerta P (2012) Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan Belt of NW Iberia). J Struct Geol. http://dx.doi.org/10.1016/j.jsg.2012.02.010

  76. Pérez-Estaún A, Bastida F, Alonso JL, Marquinez J, Aller J, Alvarezmarron J, Marcos A, Pulgar JA (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt—the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7:517–537

    Article  Google Scholar 

  77. Pérez-Estaún A, Martínez Catalán JR, Bastida F (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan Belt of northwest Spain. Tectonophysics 191:243–253

    Article  Google Scholar 

  78. Pérez-Estaún A, Pulgar JA, Banda E, Álvarez-Marón J (1994) Crustal structure of the external Variscides in NW Spain from deep seismic reflection profiling. Tectonophysics 232:91–118

    Article  Google Scholar 

  79. Perroud H (1986) Paleomagnetic evidence for tectonic rotations in the Variscan Mountain Belt. Tectonics 5:205–214

    Article  Google Scholar 

  80. Pueyo EL, Pocovi A, Pares JM, Millan H, Larrasoana JC (2003) Thrust ramp geometry and spurious rotations of paleomagnetic vectors. Studia Geophys Geodaetica 47:331–358

    Article  Google Scholar 

  81. Pueyo EL, Pocoví A, Millán H, Sussman AJ (2004) Map-view models for correcting and calculating shortening estimates in rotated thrust fronts using paleomagnetic data. Geol Soc Am Spec Pap 383:57–71

    Google Scholar 

  82. Pueyo EL, Mauritsch HJ, Gawlick HJ, Scholger R, Frisch W (2007) New evidence for block and thrust sheet rotations in the Central Northern Calcareous Alps deduced from two pervasive remagnetization events. Tectonics 26: TC5011, 25 pp

  83. Reijers TJA (1980) Sedimentary mechanisms in Spanish Devonian Carbonates. Geol Mijnbouw 59:87–96

    Google Scholar 

  84. Reijers TJA (1985) Devonian basin-fill histories of the Spanish Cantabrian Mountains and the Belgian Ardennes; a comparison. Geol Mijnbouw 64:41–62

    Google Scholar 

  85. Ribeiro A, Munha J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca P, Araujo A, Oliveira T, Romao J, Chamine H, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26:1–24. doi:10.1029/2006TC002058

    Article  Google Scholar 

  86. Ries AC, Richardson A, Shackleton RM (1980) Rotation of the Iberian arc: paleomagnetic results from north Spain. Earth Planet Sci Lett 50:301–310

    Article  Google Scholar 

  87. Rodríguez Fernández LR, Heredia N (1987) La estratigraña del Carbonífero y la estructura de la unidad del Pisuerga-Carrión. NO de España. Cuadernos Laboratorio Xeolóxico de Laxe 12:207–229

    Google Scholar 

  88. Rodríguez J, Cosca MA, Gil Ibarguchi JL, Dallmeyer RD (2003) Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica -Tui complex, NW Spain). Lithos 70:111–139

    Article  Google Scholar 

  89. Santos Zalduegui JF, Scharer U, Oil Ibarguchi JI (1995) Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica-Tuy allochthon, Galicia, NW-Spain. Chem Geol 121:91–103

    Article  Google Scholar 

  90. Schwartz SY, Van der Voo R (1984) Paleomagnetic study of thrust sheet rotation during foreland impingement in the Wyoming-Idaho Overthrust Belt. J Geophys Res 89:10071–10086

    Google Scholar 

  91. Setiabudidaya DJ, Piper DA, Shaw J (1994) Paleomagnetism of the (Early Devonian) lower old red sandstones of south Whales: implications to Variscan overprinting and differential rotations. Tectonophysics 231:257–280

    Article  Google Scholar 

  92. Stewart SA (1995a) Paleomagnetic analysis of fold kinematics and implications for geological models of the Cantabrian/Asturian Arc North Spain. J Geophys Res Solid Earth 100:20079–20094

    Article  Google Scholar 

  93. Stewart SA (1995b) Paleomagnetic analysis of plunging fold structures—errors and a simple fold test. Earth Planet Sci Lett 130:57–67

    Article  Google Scholar 

  94. Tauxe L (1998) Paleomagnetic principles and practice. Modern approaches in geophysics 17. Kluwer Academic Publishers, London

  95. Tauxe L, Watson GS (1994) The fold test: an eigen analysis approach. Earth Planet Sci Lett 122:331–341

    Article  Google Scholar 

  96. Tauxe L, Mullender TAT, Pick A (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res 101:571–583

    Article  Google Scholar 

  97. Thominski HP, Wohlenberg J, Bleil U (1993) The remagnetization of Devono-Carboniferous sediments from the Ardenno-Rhenish Massif. Tectonophysics 225:411–431

    Article  Google Scholar 

  98. Tornos F, Saphiro BF (2000) The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, Northern Spain). Econ Geol 95:1277–1296

    Google Scholar 

  99. Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, New York

    Book  Google Scholar 

  100. Van der Voo R (2004) Paleomagnetism, oroclines, and growth of the continental crust. GSA Today 14:4–9

    Google Scholar 

  101. Van der Voo R, Channell JET (1980) Paleomagnetism in Orogenic Belts. Rev Geophys Space Phys 18:455–481

    Article  Google Scholar 

  102. Van der Voo R, Stamatakos JA, Pares JM (1997) Kinematic constraints on thrust-belt curvature from syndeformational magnetizations in the Lagos del Valle Syncline in the Cantabrian Arc, Spain. J Geophys Res Solid Earth 102:10105–10119

    Article  Google Scholar 

  103. Weil AB (2006) Kinematics of orocline tightening in the core of an arc: paleomagnetic analysis of the Ponga Unit, Cantabrian Arc, northern Spain. Tectonics 25:1–23

    Article  Google Scholar 

  104. Weil AB, Sussman A (2004) Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations. Geol Soc Am Spec Pap 383:1–17

    Google Scholar 

  105. Weil AB, Van der Voo R (2002a) The evolution of the paleomagnetic fold test as applied to complex geologic situations, illustrated by a case study from northern Spain. Phys Chem Earth 27:1223–1235

    Article  Google Scholar 

  106. Weil AB, Van der Voo R (2002b) Insights into the mechanism for orogen related carbonate remagnetization from growth of authigenic Fe-oxide: A SEM and rock magnetic study of Devonian carbonates from northern. J Geophys Res 107:2001JB000200

    Google Scholar 

  107. Weil AB, Van der Voo R, van der Pluijm BA, Pares JM (2000) The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria-Asturias Arc (northern Spain). J Struct Geol 22:735–756

    Article  Google Scholar 

  108. Weil AB, Van der Voo R, van der Pluijm BA (2001) Oroclinal bending and evidence against the Pangea megashear: the Cantabria-Asturias arc (northern Spain). Geology 29:991–994

    Article  Google Scholar 

  109. Weil AB, Yonkee AW, Sussman AJ (2010a) Reconstructing the kinematic evolution of curved mountain belts: a paleomagnetic study of Triassic red beds from the Wyoming salient, Sevier thrust belt, USA. Geol Soc Am Bull 122:3–23

    Article  Google Scholar 

  110. Weil AB, Gutierrez-Alonso G, Conan J (2010b) New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. J Geol Soc 167:127–143

    Article  Google Scholar 

  111. Wotte T (2009) Re-interpretation of a Lower-Middle Cambrian West Gondwanan ramp depositional system: a case study from the Cantabrian Zone (NW Spain). Facies 55:473–487

    Article  Google Scholar 

  112. Yonkee A, Weil AB (2010) Quantifying vertical-axis rotation in curved orogens: integrating multiple data sets with a refined weighted least-squares strike test. Tectonics. doi:10.1029/2008TC002312

    Google Scholar 

  113. Zegers TE, Dekkers MJ, Bailly S (2003) Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: role of temperature, fluids and deformation. J Geophys Res. doi:10.1029/2002JB00221

    Google Scholar 

  114. Zijderveld JDA (1967) AC demagnetization of rocks. Analysis of results. In: Collison DW, Runcorn SK, Creer KM (eds) Methods in Paleomagnetism. Elsevier, New York, pp 254–286

    Google Scholar 

Download references

Acknowledgments

Funding for A.B.W. and G.G-A. came from Spanish Education and Science Ministry Project Grant CGL2009-1367 (O.D.R.E. II). The Institute for Rock Magnetism (IRM) at the University of Minnesota is thanked for giving A.B.W. time for hysteresis analysis. The IRM is funded by the Instruments and Facilities Program, Earth Sciences Division, National Science Foundation, and the W. M. Keck Foundation. A special thanks to several field assistance during the years of sampling—John W. Geissman (UT Dallas), Nicholas Lea Bruno, Jessica Shaw and Daniel Pastor-Galán. D. Wicks received summer research funding from the Bryn Mawr College Summer Science Research Program. This project was carried out in partial fulfillment of D. Wicks’s undergraduate thesis at Bryn Mawr College. Special thanks are given to Martin Keller, an anonymous reviewer, and the editorial staff at the International Journal of Earth Sciences for their helpful comments, which improved the readability and accessibility of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arlo Brandon Weil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weil, A.B., Gutiérrez-Alonso, G. & Wicks, D. Investigating the kinematics of local thrust sheet rotation in the limb of an orocline: a paleomagnetic and structural analysis of the Esla tectonic unit, Cantabrian–Asturian Arc, NW Iberia. Int J Earth Sci (Geol Rundsch) 102, 43–60 (2013). https://doi.org/10.1007/s00531-012-0790-3

Download citation

Keywords

  • Orocline
  • Cantabrian–Asturian Arc
  • Esla Unit
  • Variscan
  • Paleomagnetism
  • Thrust-belt kinematics
  • Rotations
  • Iberia