Advertisement

International Journal of Earth Sciences

, Volume 103, Issue 7, pp 2081–2099 | Cite as

Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle

  • Ralf Halama
  • Gray E. Bebout
  • Timm John
  • Marco Scambelluri
Original Paper

Abstract

The nitrogen concentrations [N] and isotopic compositions of ultramafic mantle rocks that represent various dehydration stages and metamorphic conditions during the subduction cycle were investigated to assess the role of such rocks in deep-Earth N cycling. The samples analyzed record low-grade serpentinization on the seafloor and/or in the forearc wedge (low-grade serpentinites from Monte Nero/Italy and Erro Tobbio/Italy) and two successive stages of metamorphic dehydration at increasing pressures and temperatures (high-pressure (HP) serpentinites from Erro Tobbio/Italy and chlorite harzburgites from Cerro del Almirez/Spain) to allow for the determination of dehydration effects in ultramafic rocks on the N budget. In low-grade serpentinites, δ15Nair values (−3.8 to +3.5 ‰) and [N] (1.3–4.5 μg/g) are elevated compared to the pristine depleted MORB mantle (δ15Nair ~ −5 ‰, [N] = 0.27 ± 0.16 μg/g), indicating input from sedimentary organic sources, at the outer rise during slab bending and/or in the forearc mantle wedge during hydration by slab-derived fluids. Both HP serpentinites and chlorite harzburgites have δ15Nair values and [N] overlapping with low-grade serpentinites, indicating no significant loss of N during metamorphic dehydration and retention of N to depths of 60–70 km. The best estimate for the δ15Nair of ultramafic rocks recycled into the mantle is +3 ± 2 ‰. The global N subduction input flux in serpentinized oceanic mantle rocks was calculated as 2.3 × 108 mol N2/year, assuming a thickness of serpentinized slab mantle of 500 m. This is at least one order of magnitude smaller than the N fluxes calculated for sediments and altered oceanic crust. Calculated global input fluxes for a range of representative subducting sections of unmetamorphosed and HP-metamorphosed slabs, all incorporating serpentinized slab mantle, range from 1.1 × 1010 to 3.9 × 1010 mol N2/year. The best estimate for the δ15Nair of the subducting slab is +4 ± 1 ‰, supporting models that invoke recycling of subducted N in mantle plumes and consistent with general models for the volatile evolution on Earth. Estimates of the efficiency of arc return of subducted N are complicated further by the possibility that mantle wedge hydrated in forearcs, then dragged to beneath volcanic fronts, is capable of conveying significant amounts of N to subarc depths.

Keywords

Nitrogen N isotopes Recycling Ultramafic rocks Subduction 

Notes

Acknowledgments

We thank P. Appel and A. Weinkauf for help with XRF measurements. J. A. Padrón-Navarta and E. Mitchell are thanked for constructive reviews, and the editorial handling of E. Suess and W.-C. Dullo is appreciated. Support of this project was partly provided by National Science Foundation grant EAR-0711355 to GEB and by the Italian MIUR to MS. This is contribution no. 222 of the Sonderforschungsbereich (SFB) 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

Supplementary material

531_2012_782_MOESM1_ESM.xls (30 kb)
Supplementary material 1 (XLS 30 kb)

References

  1. Abbate E, Bortolotti V, Principe G (1980) Apennines ophiolites: a peculiar oceanic crust. In: Rocci G (ed) Tethyan ophiolites, western area, Ofioliti Special Issue vol 1, pp 59–96Google Scholar
  2. Bebout GE (1997) Nitrogen isotope tracers of high-temperature fluid-rock interactions: case study of the Catalina Schist, California. Earth Planet Sci Lett 151:77–90CrossRefGoogle Scholar
  3. Bebout GE, Fogel ML (1992) Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim Cosmochim Acta 56:2839–2849CrossRefGoogle Scholar
  4. Bebout GE, Idleman BD, Li L, Hilkert A (2007) Isotope-ratio-monitoring gas chromatography methods for high-precision isotopic analysis of nanomole quantities of silicate nitrogen. Chem Geol 240:1–10Google Scholar
  5. Beccaluva L, Macciotta G, Piccardo GB, Zeda O (1984) Petrology of lherzolitic rocks from Northern Apennine ophiolites. Lithos 17:299–316CrossRefGoogle Scholar
  6. Busigny V, Cartigny P, Philippot P, Ader M, Javoy M (2003) Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth Planet Sci Lett 215:27–42CrossRefGoogle Scholar
  7. Busigny V, Laverne C, Bonifacie M (2005) Nitrogen content and isotopic composition of oceanic crust at a superfast spreading ridge: a profile in altered basalts from ODP Site 1256, Leg 206. Geochem Geophys Geosyst 6:Q12O01. doi: 10.1029/2005GC001020
  8. Busigny V, Cartigny P, Philippot P (2011) Nitrogen isotopes in ophiolitic metagabbros: a re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim Cosmochim Acta 75:7502–7521CrossRefGoogle Scholar
  9. Cartigny P, Harris JW, Phillips D, Girard M, Javoy M (1998) Subduction-related diamonds?—The evidence for a mantle-derived origin from coupled δ13C-δ15N determinations. Chem Geol 147:147–159CrossRefGoogle Scholar
  10. Cartigny P, Harris JW, Javoy M (2001a) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98CrossRefGoogle Scholar
  11. Cartigny P, Jendrzejewski N, Pineau F, Petit E, Javoy M (2001b) Volatile (C, N, Ar) variability in MORB and the respective roles of mantle and source heterogeneity and degassing: the case of the Southwest Indian Ridge. Earth Planet Sci Lett 194:241–257CrossRefGoogle Scholar
  12. Dauphas N, Marty B (1999) Heavy nitrogen in carbonatites of the Kola Peninsula: a possible signature of the deep mantle. Science 286:2488–2490CrossRefGoogle Scholar
  13. Dobrzhinetskaya LF, Wirth R, Yang J, Hutcheon ID, Weber PK, Green HW (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Nat Acad Sci 106:19233–19238CrossRefGoogle Scholar
  14. Elkins LJ, Fischer TP, Hilton DR, Sharp ZD, McKnight S, Walker J (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235CrossRefGoogle Scholar
  15. Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157CrossRefGoogle Scholar
  16. Fischer TP, Takahata N, Sano Y, Sumino H, Hilton DR (2005) Nitrogen isotopes of the mantle: insights from mineral separates. Geophys Res Lett 32. doi: 10.1029/2005GL022792
  17. Garrido CJ, López Sánchez-Vizcaíno VL, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier J-L, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15. doi: 10.1029/2004GC000791
  18. Gómez-Pugnaire MT, Ulmer P, López Sánchez-Vizcaíno V (2000) Petrogenesis of the mafic igneous rocks of the Betic Cordilleras: a field, petrological and geochemical study. Contrib Miner Petrol 139:436–457CrossRefGoogle Scholar
  19. Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(B1):2029. doi: 10.1029/2001JB001127 CrossRefGoogle Scholar
  20. Haendel D, Mühle K, Nitzsche H-M, Stiehl G, Wand U (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50:749–758CrossRefGoogle Scholar
  21. Halama R, Bebout GE, John T, Schenk V (2010) Nitrogen recycling in subducted oceanic lithosphere: the record in high- and ultrahigh-pressure metabasaltic rocks. Geochim Cosmochim Acta 74:1636–1652CrossRefGoogle Scholar
  22. Halama R, John T, Herms P, Hauff F, Schenk V (2011) A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chem Geol 281:151–166CrossRefGoogle Scholar
  23. Hanschmann G (1981) Berechnung von Isotopieeffekten auf quantenchemischer Grundlage am Beispiel stickstoffhaltiger Moleküle. ZFI Mitteilungen 41:19–39Google Scholar
  24. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. The Mineralogical Society of America, Washington, DC, pp 319–370Google Scholar
  25. Hoogerduijn Strating EH, Rampone E, Piccardo GB, Drury MR, Vissers RLM (1993) Subsolidus emplacement of mantle peridotites during incipient oceanic rifting and opening of the Mesozoic Tethys (Voltri Massif, NW Italy). J Petrol 34:901–927Google Scholar
  26. Javoy M (1997) The major volatile elements of the Earth: their origin, behavior, and fate. Geophys Res Lett 24:177–180CrossRefGoogle Scholar
  27. Javoy M (1998) The birth of the Earth’s atmosphere: the behaviour and fate of its major elements. Chem Geol 147:11–25CrossRefGoogle Scholar
  28. Jia Y, Kerrich R, Gupta AK, Fyfe WS (2003) 15N-enriched Gondwana lamproites, eastern India: crustal N in the mantle source. Earth Planet Sci Lett 215:43–56CrossRefGoogle Scholar
  29. John T, Scherer E, Schenk V, Herms P, Halama R, Garbe-Schönberg D (2010) Subducted seamounts in an eclogite-facies ophiolite sequence: the Andean Raspas Complex, SW Ecuador. Contrib Miner Petrol 159:265–284CrossRefGoogle Scholar
  30. John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76CrossRefGoogle Scholar
  31. Johnson ER, Wallace PJ, Delgado Granados H, Manea VC, Kent AJR, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 20:1729–1764CrossRefGoogle Scholar
  32. Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812CrossRefGoogle Scholar
  33. Kerrich R, Jia Y, Manikyamba C, Naqvi SM (2006) Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. In: Kesler SE, Ohmoto H (eds) Evolution of early earth’s atmosphere, hydrosphere, and biosphere—constraints from ore deposits. Geological Society of America, pp 81–104Google Scholar
  34. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 71:2344–2360Google Scholar
  35. Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis and paleoproductivity. J Geophys Res 110:B11202. doi: 10.1029/2004JB003276 CrossRefGoogle Scholar
  36. Li L, Bebout AE, Idleman BD (2007) Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochim Cosmochim Acta 71:2344–2360CrossRefGoogle Scholar
  37. López Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O, Connolly JAD (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Miner Petrol 149:627–646CrossRefGoogle Scholar
  38. López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Garrido CJ, Padrón-Navarta JA, Mellini M (2009) Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): a petrological and TEM study. Lithos 107:216–226CrossRefGoogle Scholar
  39. Marroni M, Pandolfi L (2007) The architecture of an incipient oceanic basin: a tentative reconstruction of the Jurassic Liguria-Piemonte basin along the Northern Apennines-Alpine Corsica transect. Int J Earth Sci 96:1059–1078CrossRefGoogle Scholar
  40. Marroni M, Molli G, Montanini A, Tribuzio R (1998) The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent-ocean transition in the Western Tethys. Tectonophysics 292:43–66CrossRefGoogle Scholar
  41. Marty B, Dauphas N (2003) The nitrogen record of crust-mantle interaction and mantle convection from Archean to Present. Earth Planet Sci Lett 206:397–410CrossRefGoogle Scholar
  42. Marty B, Humbert F (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet Sci Lett 152:101–112CrossRefGoogle Scholar
  43. Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633CrossRefGoogle Scholar
  44. Messiga B, Scambelluri M, Piccardo GB (1995) Formation and breakdown of chloritoid-omphacite high-pressure assemblages in mafic systems: evidence from the Erro-Tobbio eclogitic metagabbros (Ligurian Western Alps). Eur J Mineral 7:1149–1167CrossRefGoogle Scholar
  45. Mingram B, Bräuer K (2001) Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim Cosmochim Acta 65:273–287Google Scholar
  46. Minoura K, Hoshino K, Nakamura T, Wada E (1997) Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material. Paleogeogr Paleoclimatol Paleoecol 135:41–50CrossRefGoogle Scholar
  47. Mitchell EC, Fischer TP, Hilton DR, Hauri EH, Shaw AM, de Moor JM, Sharp ZD, Kazahaya K (2010) Nitrogen sources and recycling at subduction zones: insights from the Izu-Bonin-Mariana arc. Geochem Geophys Geosyst 11:Q02X11. doi: 10.1029/2009GC002783
  48. Montanini A, Tribuzio R, Anczkiewicz R (2006) Exhumation history of a garnet pyroxenite-bearing mantle section from a continent-ocean transition (Northern Apennine Ophiolites, Italy). J Petrol 47:1943–1971CrossRefGoogle Scholar
  49. Padrón-Navarta JA, Hermann J, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2010) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Miner Petrol 159:25–42CrossRefGoogle Scholar
  50. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). J Petrol 52:2047–2078CrossRefGoogle Scholar
  51. Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23:598–604CrossRefGoogle Scholar
  52. Philippot P, Busigny V, Scambelluri M, Cartigny P (2007) Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction. Mineral Petrol 91:11–24CrossRefGoogle Scholar
  53. Piccardo GB, Vissers RLM (2007) The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy). J Geodyn 43:417–449CrossRefGoogle Scholar
  54. Pitcairn IK, Teagle DAH, Kerrich R, Craw D, Brewer TS (2005) The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: evidence from the Otago and Alpine Schists, New Zealand. Earth Planet Sci Lett 233:229–246CrossRefGoogle Scholar
  55. Puga E, Nieto JM, Díaz de Federico A, Bodinier J-L, Morten L (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacén complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49:23–56CrossRefGoogle Scholar
  56. Rampone E, Hoffmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petrology, mineral and isotope geochemistry of the external Liguride peridotites (northern Apennine, Italy). J Petrol 36:81–105CrossRefGoogle Scholar
  57. Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle American trench. Nature 425:367–373CrossRefGoogle Scholar
  58. Rüpke LH, Phipps Morgan J, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34CrossRefGoogle Scholar
  59. Sadofsky SJ, Bebout GE (2003) Record of forearc devolatilization in low-T, high-P/T metasedimentary suites: significance for models of convergent margin chemical cycling. Geochem Geophys Geosyst 4:9003. doi: 10.1029/2002GC000412 CrossRefGoogle Scholar
  60. Sadofsky SJ, Bebout GE (2004) Nitrogen geochemistry of subducting sediments: new results from the Izu-Bonin-Mariana margin and insights regarding global nitrogen subduction. Geochem Geophys Geosyst 5:Q03I15. doi: 10.1029/2003GC000543
  61. Sano Y, Takahata N, Nishio Y, Fischer TP, Williams S (2001) Volcanic flux of nitrogen from the Earth. Chem Geol 171:263–271CrossRefGoogle Scholar
  62. Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6:Q04J15. doi: 10.1029/2004GC000777
  63. Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res 111:B09205. doi: 10.1029/2006JB004749 Google Scholar
  64. Scambelluri M, Tonarini S (2011) Subducted serpentinites are the boron reservoirs for arc magmatism. Goldschmidt Conference Abstracts, Mineralogical Magazine 75:1806Google Scholar
  65. Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148:485–499CrossRefGoogle Scholar
  66. Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez-Pugnaire MT, López Sánchez-Vizcaíno V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470CrossRefGoogle Scholar
  67. Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:593–613CrossRefGoogle Scholar
  68. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379Google Scholar
  69. Sharp ZD, Barnes JD (2004) Water soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254CrossRefGoogle Scholar
  70. Snyder G, Poreda R, Fehn U, Hunt A (2003) Sources of nitrogen and methane in Central American geothermal settings: noble gas and 129I evidence for crustal and magmatic volatile components. Geochem Geophys Geosyst 4:9001. doi: 10.1029/2002GC000363 CrossRefGoogle Scholar
  71. Straub SM, Layne GD (2003) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4:9003. doi: 10.1029/2002GC000349 Google Scholar
  72. Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148:207–221CrossRefGoogle Scholar
  73. Tolstikhin IN, Marty B (1998) The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chem Geol 147:27–52CrossRefGoogle Scholar
  74. Tonarini S, Agostini S, Doglioni C, Innocenti F, Manetti P (2007) Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas. Geochem Geophys Geosyst 8(9). doi: 10.1029/2006GC001508
  75. Trommsdorff V, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Miner Petrol 132:139–148CrossRefGoogle Scholar
  76. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861CrossRefGoogle Scholar
  77. van der Straaten F, Schenk V, John T, Gao J (2008) Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): implications for fluid-rock interaction in the subduction channel. Chem Geol 225:195–219CrossRefGoogle Scholar
  78. Watenphul A, Wunder B, Heinrich W (2009) High-pressure ammonium-bearing silicates: implications for nitrogen and hydrogen storage in the Earth’s mantle. Am Mineral 94:283–292CrossRefGoogle Scholar
  79. Yokochi R, Marty B, Chazot G, Burnard P (2009) Nitrogen in peridotite xenoliths: lithophile behavior and magmatic isotope fractionation. Geochim Cosmochim Acta 73:4843–4861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ralf Halama
    • 1
  • Gray E. Bebout
    • 2
  • Timm John
    • 3
  • Marco Scambelluri
    • 4
  1. 1.Institut für Geowissenschaften and SFB 574Universität KielKielGermany
  2. 2.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA
  3. 3.Institut für MineralogieUniversität MünsterMünsterGermany
  4. 4.Dipartimento per lo Studio del Territorio e delle sue RisorseUniversità di GenovaGenovaItaly

Personalised recommendations