Skip to main content
Log in

Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U–Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374 Ma (Upper Devonian) for the Guaraco Norte Formation and 389 Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406 ± 4 Ma to 369 ± 5 Ma), indicative of active magmatism at that time range. The εHf values of this population range between −2.84 and −0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted to represent passive margin deposits of mostly Lower Carboniferous age (younger than 374 Ma and older than 326 Ma) that precede the onset of the accretionary prism in Chile and extend into the earliest stage of the accretion, in a retrowedge position. The Arroyo del Torreón and Huaraco formations are considered to be retrowedge basin deposits to the early frontal accretionary prism (Eastern Series) of Chile. The presence of volcanism with arc signature in the units provides evidence of a Mississippian magmatic arc that can be correlated with limited exposures of the same age in the Frontal Cordillera (Argentina). The arc would have migrated to the West (Coastal Batholith) during Pennsylvanian–Permian times (coevally with the later basal accretionary prism/Western Series). The source of a conspicuous population of Devonian detrital zircon interpreted to be of magmatic origin in the studied units is discussed in various possible geotectonic scenarios, the preferred model being a magmatic arc developed in the Chilenia block, related to a west-dipping subduction beneath Chilenia before and shortly after its collision against Cuyania/Gondwana, at around 390 Ma and not linked to the independent, Devonian–Mississippian arc, developed to the south, in Patagonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abre P, Zimmermann U, Cingolani C, Cairncross B, Chemale F Jr (2006) Nd isotopes from yerba loca formation (upper ordovician). Cuyania terrane, Argentina

    Google Scholar 

  • Alvarez J, Mpodozis C, Arriagada C, Astini R, Morata D, Salazar E, Valencia VA, Vervoort JD (2011) Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28°–32°S): possible fingerprints of the Chilenia terrane. J South Am Earth Sci Vol 32(4):460–476

    Article  Google Scholar 

  • Amelin Y, Lee D-C, Halliday AN, Pidgeon RT (1999) Nature of the earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255

    Article  Google Scholar 

  • Amos AJ (1972) Las cuencas carbónicas y pérmicas de Argentina. Simposio Internacional, Sistema Carbónico-Pérmico América do Sul. Anales de la Academia Brasilera de Ciencias 44 (Supl.):27–36. Río de Janeiro

  • Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geol Soc Am Bull 107(3):253–273

    Article  Google Scholar 

  • Benedetto JL, Astini RA (1993) A collisional model for the stratigraphic evolution of the Argentine Precordillera during the early Paleozoic. II ISAG 93 (Oxford) 501–504. Paris

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193

    Article  Google Scholar 

  • Bizzarro M, Baker J, Ulbeck D (2003) A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostand Newsl 27:133–145

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarede F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS. Contrib Mineral Petrol 127:248–260

    Google Scholar 

  • Casquet C, Pankhurst RJ, Fanning CM, Baldo E, Galindo C, Rapela CW, González Casado JM, Dahlquist JA (2006) U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res 9(4):524–529

    Article  Google Scholar 

  • Charrier R, Pinto L, Rodríguez M (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society of London, London, pp 21–114

  • Chernicoff CJ, Zapettini EO (2004) Geophysical evidence for terrane boundaries in South-Central Argentina. Gondwana Res 7(4):1105–1117

    Article  Google Scholar 

  • Chernicoff CJ, Zappettini EO, Santos JOS, Godeas MC, Belousova E, McNaughton NJ (2012) Identification and isotopic studies of Early Cambrian magmatism (El Carancho Igneous Complex) at the boundary between Pampia terrane and the Río de la Plata craton, La Pampa province, Argentina. Gondwana Res 21(2–3):378–393

    Article  Google Scholar 

  • Cingolani CA, Varela R, Abre P, Manassero M, Tickyj H, Uriz N, (2011a) Insights on the pre-Carboniferous tectonic evolution of the San Rafael block, Mendoza, Argentina. XVIII Congreso Geológico Argentino. Actas CD-ROM. Neuquén

  • Cingolani CA, Zanettini JCM, Leanza HA (2011b) El basamento ígneo y metamórfico. In: Leanza HA, Arregui C, Carbone O, Danieli JM, Vallés JM (eds) Geología y recursos naturales de la provincia del Neuquén, Relatorio del XVIII Congreso Geológico Argentino. Asociación Geológica Argentina, Buenos Aires, pp 37–47

    Google Scholar 

  • Collao S, Alfaro G, Hayashi K (1990) Banded Iron formation and Massive Sulfide Orobodies, South-Central Chile. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Geologic and isotopic aspects. En stratabound ore deposits in the Andes. Springer, Berlin, pp 209–219

    Google Scholar 

  • Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM, Alasino P, Báez M (2006) The San Blas Pluton: an example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. J South Am Earth Sci 20:341–350

    Article  Google Scholar 

  • Dahlquist JA, Alasino PH, Eby GN, Galindo C, Casquet C (2010) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115:65–81

    Article  Google Scholar 

  • Davis J, Roeske S, McClelland, W, Snee L (1999) Closing the ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera. In: Ramos VA, Keppie J (eds) Laurentia and Gondwana Connections before Pangea. Geological Society of America, Special Papers, 336, 115–138

  • Digregorio JH (1972) Neuquén. In: Leanza AF (ed) Geología regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 439–505

    Google Scholar 

  • Dill H, Teshner M, Wehner H (1988) Petrography, inorganic and organic geochemistry of lower Permian Carboniferous fan sequences (Brandschiefer series) FRG: constraints to their palaeogeography and assessment of their source rock potential. Chem Geol 67(3–4):307–325

    Article  Google Scholar 

  • Ezpeleta M, Astini RA, Dávila FM, Cawood P (2009) SHRIMP U–Pb dating and subsidence analysis of pre-Andean Paganzo Basin, Northwestern Argentina: implications for late Paleozoic tectonic evolution of western Gondwana. Latin Amerika Kollokium, Abstracts and Programs: 93–95. Göttingen

  • Floyd PA, Winchester JA, Park RG (1989) Geochenistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, Northwest Scotland. Precambr Res 45:203–214

    Article  Google Scholar 

  • Fortey R, Pankhurst RJ, Hervé F (1992) Devonian Trilobites at Buill, Chile (42°S). Revista Geológica de Chile 19(2):133–144

    Google Scholar 

  • Franzese J (1995) El Complejo Piedra Santa (Neuquén, Argentina): parte de un cinturón metamórfico neopaleozoico del Gondwana suroccidental. Revista Geológica de Chile 22(2):193–202

    Google Scholar 

  • Frutos J, Tobar A (1975) Evolution of the southwestern continental margin of South America. In: Campbell KSW (ed) III° International Gondwana Symposium (Canberra), Gondwana Geology. Australian National University Press, Acton, pp 565–578

    Google Scholar 

  • Gallagher JJ (1990) Andean chronotectonics. In: Ericksen GE, Cañas Pinochet MT, Reinemud JA (eds) Geology of the Andes and its relation to Hydrocarbon and Mineral Resources, Circumpacific Council for Energy and Mineral Resources, Earth Sciences Series 11, Houston. The American Association of Petroleum Geologists, pp 23–38. ISSN:1068-6517

  • Gallegos E, Vattuone ME, Ostera HA (2010) Petrografía y geoquímica del basamento metamórfico al sur del lago Ñorquinco, Provincia de Neuquén, Argentina. X Congreso de Mineralogía y Metalogenia, Río Cuarto, Argentina. Actasm, pp 283–286

  • Gana P, Tosdal RM (1996) Geocronología U–Pb y K-Ar en intrusivos del Paleozoico y Mesozoico de la Cordillera de la Costa, Región de Valparaíso, Chile. Revista Geológica de Chile 23(2):151–164

    Google Scholar 

  • Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. J Geol 102:411–422

    Article  Google Scholar 

  • Garrido M, Barra F, Domínguez E, Ruiz J, Valencia VA (2008) Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina. Miner Deposita 43:591–597

    Article  Google Scholar 

  • Gerbi C, Roeske SM, Davis JS (2002) Geology and structural history of the southwest Precordillera margin, Northern Mendoza Province, Argentina. J South Am Earth Sci 14:821–835

    Article  Google Scholar 

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleo accretionary wedge: insights from combined isotope tectonochronology and sandbox modeling of the South-Central Chilean forearc. Earth Planet Sci Lett 231:23–39

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In Oncken O, Chong G, Franz G (ed) The Andes—active subduction orogeny, vol 1 of Frontiers in Earth Science Series. Springer, Berlin, pp 401–428

  • Glodny J, Echtler H, Collao S, Ardiles M, Burón P, Figueroa O (2008) Differential Late Paleozoic active margin evolution in South-Central Chile (37°S–40°S)—the Lanalhue Fault Zone. J South Am Earth Sci 26:397–411

    Article  Google Scholar 

  • Groeber P (1929) Líneas fundamentales de la geología del Neuquén, sur de Mendoza y regiones adyacentes. Dirección General de Minas, Geología e Hidrología. Publicación N° 58, p 109. and 9 figures. Buenos Aires

  • Grosse P, Söllner F, Báez M, Toselli AJ, Rossi JN, De la Rosa J (2008) Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U–Pb monazite geochronology, geochemistry and Sr-Nd isotopes. Int J Earth Sci. doi:10.1007/s00531-007-0297

  • Hallberg RO (1976) A geochemical method for investigation of paleoredox conditions in sediments: Ambio. Spec Rep 4:139–147

    Google Scholar 

  • Heredia N, Farias P, García Sansegundo J, Giambiagi L (2012) The Basement of the Andean Frontal Cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geol 39(2):242–257

  • Hervé F (1988) Late Paleozoic subduction and accretion in Southern Chile. Episodes 11(3):183–188

    Google Scholar 

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the coast range of central Chile: geochronology and geologic setting. J South Am Earth Sci 1:185–194

    Article  Google Scholar 

  • Hervé F, Faundez V, Calderón M, Massonne H-J, Willner AP (2007). Metamorphic and plutonic basement complexes. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society of London, London, pp 5–20

  • Hervé F, Calderón M, Fanning CM, Godoy E (2010) North-south variations in provenance in the late Paleozoic accretionary complex of central Chile (34°–40°S. Lat.) as indicated by SHRIMP U–Pb detrital zircon ages. VII South American symposium on isotope geology, VII SSAGI, pp 224–227, Brasilia

  • Hoskin PWO, Schaltegger U (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev Miner Geochem 53(1):27–62

    Article  Google Scholar 

  • Jones B, Manning DC (1994) Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chem Geol 111:111–129

    Article  Google Scholar 

  • Kato T, Godoy E (1995) Petrogenesis and tectonic significance of Late Paleozoic coarse-crystalline blueschist and amphibolite boulders in the Coastal Range of Chile. Int Geol Rev 37:992–1006

    Article  Google Scholar 

  • Leanza H (1990) Estratigrafía del Paleozoico y Mesozoico anterior a los movimientos intermálmicos en la comarca del Cerro Chachil, provincia del Neuquén. Asociación Geológica Argentina, Revista 45(3–4):272–299. Buenos Aires

  • Levi B, Aguilar A, Fuenzalida R (1966) Reconocimiento Geológico en las Provincias de Llanquihue y Chiloé. Instituto de Investigaciones Geológicas, Boletín (19), p 45

  • Linares E, González R (1990) Catálogo de edades radimétricas de la República Argentina 1957–1987. Publicaciones especiales de la Asociación Geológica Argentina, Serie “B” (Didáctica y Complementaria) N° 19, 630 páginas, Buenos Aires

  • Llambías EJ (1999) Las rocas ígneas gondwánicas. 1. El magmatismo gondwánico durante el Paleozoico superior-Triásico. In Geología Argentina. Instituto de Geología y Recursos Minerales, SEGEMAR, Anales 29(14):349–376, Buenos Aires

  • Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico temprano en la Cordillera del Viento (37°05′S–37°15′S): Nuevas evidencias geológicas y geoquímicas del inicio de la Cuenca neuquina. Revista de la Asociación Geológica Argentina 62(2):217–235

    Google Scholar 

  • López de Azarevich VL, Escayola M, Azarevich MB, Pimentel MM, Tassinari C (2009) The Guarguaraz Complex and the Neoproterozoic–Cambrian evolution of southwestern Gondwana: geochemical signatures and geochronological constraints. J South Am Earth Sci 28:333–344

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36°–41°S). J South Am Earth Sci 17:103–119

    Article  Google Scholar 

  • Ludwig KR (2001) Squid 1.02: a users manual. Berkeley Geochronology Center. Special Publication, vol 2, p 19

  • Ludwig KR (2003) Isoplot 3.00, a geochronological took-kit for Excel. Berkeley Geochronology Center. Special Publication, vol 4, p 67

  • Martin MW, Kato TT, Campos A (1997) Stratigraphic, structural, metamorphic and timing constraints for the assembly of Late Paleozoic to Triassic rocks in the Lake district, Chile (40°S) VIII.Congreso Geológico Chileno. Universidad Catolica del Norte, Actas, pp 154–158

    Google Scholar 

  • Martin M, Kato T, Rodriguez C, Godoy E, Duhart P, MacDonough M, Campos A (1999) Evolution of the late Palaeozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S); constraints for the tectonic setting along the south-western margin of Gondwana. Tectonics 18:582–605

    Article  Google Scholar 

  • Martina F, Astini RA (2009) El volcanismo “eohercínico” (Mississippiano): dónde está? XII Congreso Geológico Chileno. Santiago. Extended Abstract, S8_003

  • Martina F, Viramonte JM, Astini RA, Pimentel MM, Dantas E (2010) Mississippian volcanism in the south-central Andes: new U–Pb SHRIMP zircon geochronology and whole-rock geochemistry. Gondwana Res doi:10.1016/j.gr.2010.07.004

  • Martínez C (1980) Geologie des Andes Boliviennes. Estructure et evolution de la chaine hercynienne et de la chaine andine dans le nord de la Cordillere des Andes de Bolivie. Travaux et Documents de ORSTOM (Office Recherche Scientifique Technique Outre-Mer) 119, pp 1–352. París

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Miner 21:169–200

    Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. GSA Special Paper, vol 284, pp 21–39. Boulder

  • Méndez V, Zanettini JCM, Zappettini EO (1995) Geología y metalogénesis del orógeno andino central, República Argentina. Secretaría de Minería de la Nación, Dirección Nacional del Servicio Geológico. Anales 23, p 190 and one map in two sheets. Buenos Aires

  • Miller H, Adams C, Aceñolaza F, Toselli A (2011) Evolution of exhumation and erosion in western West Gondwanaland as recorded by detrital zircons of late Neoproterozoic and Cambrian sedimentary rocks of NW and Central Argentina. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-010-0559-5

  • Naipauer M, Cingolani CA, Valencio S, Chemale F Jr, Vujovich GI (2005) Estudios sotopicos en carbonatos marinos del Terreno Precordillera-Cuyania: Plataforma comun en el Neoproterozoico-Paleozoico Inferior? Lat Am J Sedimentol Basin Anal 12(2):89–108

    Google Scholar 

  • Nath BN, Bau M, Ramalingeswara Rao B, Rao ChM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61(12):2375–2388

    Article  Google Scholar 

  • Oyarzún R, Clemmey H, Collao S (1986) Geologic and metallogenic aspects concerning the Nahuelbuta mountains banded iron formation, Chile. Miner Deposita 21(3):244–250

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Loske WP, Márquez M, Fanning CM (2003) Chronological study of the pre-Permian basement rocks of southern Patagonia. J South Am Earth Sci 16:27–44

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Ramos VA (1984) Patagonia: Un continente paleozoico a la deriva? 9° Congreso Geológico Argentino (Bariloche). Actas 2:311–325

    Google Scholar 

  • Ramos VA (1986) Tectonostratigraphy, as applied to analysis of South African Phanerozoic Basins by H. de la R. Winter, discussion. Transactions Geological Society South Africa 87(2):169–179

  • Ramos V (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7:1009–1026

    Article  Google Scholar 

  • Ramos VA (2008) Patagonia: a Paleozoic Continent adrift? J South Am Sci. doi:10.1016/j.jsames.2008.06.002

  • Ramos VA, Basei MAS (1997) The basement of Chilenia: an exotic continental terrane to Gondwana during the early Paleozoic. In: Bradshaw J, Weaver S (eds) International conference on terrane geology, Christchurch, Abstract, pp 140–143

  • Ramos VA, Jordan T, Allmendinger R, Kay S, Cortés J, Palma M (1984) Chilenia: un terreno alóctono en la evolución paleozoica de los Andes Centrales. Actas IX Congreso Geológico Argentino 2:84–106

    Google Scholar 

  • Ramos VA, García Morabito E, Hervé F, Fanning CM (2010) Grenville-age sources in Cuesta de Rahué, northern Patagonia: Constraints from U–Pb SHRIMP ages from detrital zircons. International Geological Congress on the Southern Hemisphere (GEOSUR 2010). Bolletino de Geofisica 51(Supplement):42–44. Mar del Plata

  • Ramos VA, Mosquera A, Folguera A, García Morabito E (2011) Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In: Leanza HA, Arregui C, Carbone O, Danieli JM, Vallés JM (eds) Geología y Recursos Naturales de la provincia del Neuquén, Relatorio del XVIII Congreso Geológico Argentino. Asociación Geológica Argentina, Buenos Aires, pp 335–348

    Google Scholar 

  • Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Paleozoic: some paleomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geological Society, London, Special Publications 246, pp 305–328

  • Rapela CW, Pamkhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning, CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society, London, Special Publications, 142, pp 181–217

  • Richter P, Ring U, Willner AP, Leiss B (2007) Structural contacts in subduction complexes and their tectonic significance: the Late Palaeozoic coastal accretionary wedge of central Chile. J Geol Soc Lond 164:203–214

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94(5):635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Sagripanti L, Bottesi G, Naipauer M, Fologuera A, Ramos V (2011) U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36°–37°S): constraints on Andean exhumation. J South Am Earth Sci 32:555–566

    Article  Google Scholar 

  • Sato AM, Tickyj H, Llambías EJ, Basei MAS, González PD (2004) Las Matras Block, Central Argentina (37°S–67°W): the Southernmost Cuyania Terrane and its Relationship with the Famatinian Orogeny. Gondwana Res 7(4):1077–1087

    Article  Google Scholar 

  • Sato AM, Llambías EJ, Basei MAS, Leanza HA (2008) The permian Choiyoi cycle in Cordillera del Viento (Principal Cordillera): over 25 Ma of magmatic activity. 6th South American Cyjposium on Isotope Geology, San Carlos de Baqriloche, Argentina. Abstracts, p 102. Extended Abstract in CD-ROM

  • Schiuma M, Llambías EJ (2008) New ages and chemical analysis on lower Jurassic volcanism close to the Dorsal de Huincul, Neuquén. Revista de la Asociación Geológica Argentina 63(4):644–652

    Google Scholar 

  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión1.0, 2003). Santiago

  • Sims JP, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow RG, Stuart-Smith PG (1998) U–Pb, Th–Pb and Ar–Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana, Geological Society of London, Special Publication 142, pp 259–281

  • Stoll WC (1957) Geología y depósitos minerales de Andacollo, provincia de Neuquén. Dirección Nacional de Minería. Anales VI. pp 36, 7 figures. Buenos Aires

  • Suárez M, De La Cruz R (1997) Volcanismo pliniano del Lías durante los inicios de la cuenca de Neuquén, Cordillera del Viento, Neuquén, Argentina. 7° Congreso Geológico Chileno. Actas 1:266–270

    Google Scholar 

  • Suárez M, De la Cruz R, Fanning M, Etchart H (2008) Carboniferous, Permian and Toarcian magmatism in Cordillera del Viento, Neuquén, Argentina: First U–Pb Shrimp dates and tectonic implications. XVII Congreso Geológico Argentino, Actas, pp 906–907. S. S. de Jujuy

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Frontiers in earth sciences. Blackwell, England, p 211

    Google Scholar 

  • Tavera J (1983) Noticias sobre la presencia de Graptoloideos en rocas del Basamento Cristalino (Formación Lumaco, Lat. 38°S). Impr. Gráfica. Santiago

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

  • Tickyj H (2011) Granitoides calcoalcalinos tardío-famatinianos en el Cordón del Carrizalito, Cordillera Frontal, Mendoza. XVIII Congreso Geológico Argentino. Actas CD-ROM, Neuquén

    Google Scholar 

  • Tickyj H, Fernandez MA, Chemale Jr F, Cingolani C (2009) Granodiorita Pampa de los Avestruces, Cordillera Frontal, Mendoza: un intrusivo sintectónico de edad devónica inferior. XIV Reunión de Tectónica. Abstracts: 27. Río Cuarto

  • Tomezzoli RN (2011) Chilenia y Patagonia: un mismo continente a la deriva? XVIII Congreso Geológico Argentino. Actas CD-ROM, Neuquén

    Google Scholar 

  • Toselli AJ, Basei MAS, Rossi JN (2010) The Rio Colorado pluton: a new Devonian A-type granite of the sierra de Zapata, Argentina. 7 South American Symposium on Isotope Geology. Brasília. Digital Proceedings

  • Valencio DA, Vilas JFA (1985) Evidence of a microplate in the Southern Andes. J Geodyn 2(2–3):183–192

    Article  Google Scholar 

  • Varela R, Basei MAS, Cingolani C, Siga O Jr, Passarelli C (2005) El basamento cristalino de los Andes Patagónicos en Argentina: geocronología e interpretación tectónica. Revista Geológica de Chile 32(2):167–187

    Article  Google Scholar 

  • Vattuone de Ponti ME (1988) Metamorfismo de baja presión en la Cordillera Neuquina. In 5th Congreso Geológico Chileno, Actas 2: E41–E45. Santiago

  • Veevers JJ, Belousova EA, Saeed A, Sircombe K, Cooper AF, Read SE (2006) Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth Sci Rev 76:135–174

    Article  Google Scholar 

  • Willner AP (2005) Pressure-temperature evolution of an Upper Paleozoic paired metamorphic belt in Central Chile (34°–35°30′S). J Petrol 46:1805–1833

    Article  Google Scholar 

  • Willner AP, Pawlig S, Massonne H-J, Hervé F (2001) Metamorphic evolution of spessartine quartzites (coticules) in the high-pressure, low-temperature complex at Bahia Mansa, Coastal Cordillera of South-Central Chile. Can Miner 39:1547–1569

    Article  Google Scholar 

  • Willner AP, Glodny J, Gerya TV, Godoy E, Massonne H-J (2004) A counterclockwise PT-path of high pressure–low temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310

    Article  Google Scholar 

  • Willner AP, Thomson SN, Kröner A, Wartho JA, Wijbrans J, Hervé F (2005) Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic belt in central Chile (34°–35°30′S). J Petrol 46:1835–1858

    Article  Google Scholar 

  • Willner AP, Gerdes A, Massonne H (2008) History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°–36° S revealed by a U–Pb and Lu–Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem Geol 253(2008):114–129

    Article  Google Scholar 

  • Willner AP, Massonne HJ, Gerdes A, Hervé F, Sudo M, Thomson S (2009) The contrasting evolution of collisional and coastal accretionary systems between the latitudes 30 and 35°S: evidence for the existence of a Chilenia microplate. XII Congreso Geológico Chileno. S9_099, p 4

  • Willner AP, Gerdes A, Massonne HJ, Schmidt A, Sudo M, Thomson SN, Vujovich G (2011a) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina). Contrib Miner Petrol 162:303–327

    Article  Google Scholar 

  • Willner AP, Massone H-J, Ring U, Sudo M, Thomson SN (2011b) P–T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31–32°S). Geological Magazine. doi:10.1017/S0016756811000641

  • Wood DA (1980) The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Article  Google Scholar 

  • Zanettini JCM (2001) Hoja Geológica 3772-II Las Ovejas, Provincia del Neuquén. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales Boletín N° 263. p 61 and 1 map. Buenos Aires

  • Zappettini EO, Dalponte M (2009) Hallazgo de hierro bandeado en el basamento del sector noroccidental de la Cordillera del Viento, provincia del Neuquén: Aspectos estratigráficos y metalogenéticos. Asociación Geológica Argentina. Revista 64(3):550–554. Buenos Aires

  • Zappettini EO, Méndez V, Zanettini JCM (1987) Metasedimentitas mesopaleozoicas en el noroeste de la Provincia del Neuquén. Revista de la Asociación Geológica Argentina 42(1–2):206–207. Buenos Aires

  • Zöllner W, Amos A (1955) Acerca del Paleozoico superior y Triásico del Cerro La Premia, Andacollo, Neuquén. Revista de la Asociación Geológica Argentina X(2):127–135. Buenos Aires

  • Zöllner W, Amos A (1973) Descripción geológica de la Hoja 32b Chos Malal, Provincia de Neuquén. Boletín Servicio Nacional de Minería y Geología, 143. Buenos Aires

Download references

Acknowledgments

This work was financed by the Geological and Mining Survey of Argentina (SEGEMAR) and received partial support from the Research Grant PIP-11220090100181 (CONICET). The authors would like to thank A. Willner and V. Ramos for their comprehensive review that substantially improved an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo O. Zappettini.

Appendix: Description of methods

Appendix: Description of methods

Chemical analysis of unaltered and homogeneous samples includes the following: major elements were analyzed by XRF and trace element determinations were performed by ICP/MS, both at Activation Laboratories Ltd. of Canada. For high LOI values, quantitative analyses were made by thermogravimetry, using a TA instrument model SDT Q600 at SEGEMAR laboratories.

U–Pb analyses were carried out at Curtin University of Technology, Perth, and the Hf isotopic analyses at Macquarie University, Sydney.

Samples ZD62-946 (Guaraco Norte Formation, meta-sandstone collected at point 1, Fig. 1) and ZD58-67a (Arroyo del Torreón Formation, meta-tuff collected at point 2, Fig. 1) have been crushed, milled, sieved, and washed to remove very fine material (clay and silt sizes). The 60–250 mesh fractions were treated with heavy liquids (to remove light minerals) and magnetic separator (to concentrate the less magnetic minerals such as zircon). Zircon was handpicked and organized in an epoxy mount, which was polished and carbon-coated for SEM (Scanning Electron Microscope) study. Back-scattered images (BSE) were taken using a JEOL6400 SEM at the Center for Microscopy and Microanalyses at University of Western Australia. Images of zircon are critical for identifying internal features such as core and rims and to help avoiding areas with high common lead content (inclusions, fractures, and metamict areas). Epoxy mount (UWA 05–85) was gold coated for SHRIMP analyses. The SHRIMP analytical spot was about 25 μm in diameter and four or five LA scans were used for each spot-analysis. Both 206Pb/238U and 207Pb/206Pb ages are presented in Table 2 but 206Pb/238U ages are used for the ages in cumulative plots and for individual grains except for Mesoproterozoic grains c.1–1., d.1–1, and e.12–2. The uncertainties of individual ages are quoted at 1σ, whereas the final ages and those used in the plots are calculated at 2σ level (about 95 % confidence). SHRIMP data were reduced using SQUID software (Ludwig 2001) and plots are prepared using ISOPLOT/Ex (Ludwig 2003).

Hf-isotope analyses reported here were carried out in situ using a New Wave Research LUV213 laser-ablation microprobe, attached to a Nu Plasma multicollector ICPMS at GEMOC Key Center, Macquarie University, Sydney. Most analyses are carried out with a beam diameter of about 40 μm, a 10 Hz repetition rate, and energies of 0.6–1.3 mJ/pulse. Typical ablation times are 30–120 s, resulting in pits 20–40 μm deep. The analytical spots of Hf-isotope analyses were located in the same site of the previous U–Pb SHRIMP analyses. Isobaric interferences of 176Lu and 176Yb on 176Hf were corrected by the Nu Plasma because the mass bias of the instrument is independent of mass over the mass range considered. Interference of 176Lu on 176Hf is corrected by measuring the intensity of the interference-free 175Lu isotope and using 176Lu/175Lu = 0.02669 to calculate the intensity of 176Lu. Similarly, the interference of 176Yb on 176Hf is corrected by measuring the interference-free 172Yb isotope and using 176Yb/172Yb to calculate the intensity of 176Yb. The spiking of JMC475 Hf standard is used to determine the value of 176Yb/172Yb (0.5865) required to yield the value of 176Hf/177Hf obtained on the pure Hf solution.

The 176Lu decay constant used to calculate initial 176Hf/177Hf, εHf values, and model age is 1.983 × 10−11 (Bizzarro et al. 2003). Typical uncertainties on single 176Lu/177Hf analyses are about 1 epsilon unit (±0.001–0.002 %) incorporating both spatial variation of Lu/Hf and analytical uncertainties. Hf data are given in Table 3. εHf values, also summarized in Table 3, were calculated at the 206Pb/238U age of each grain (T). For grains c.1-2 and e.12-2, the εHf is calculated at the 207Pb/206Pb age.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappettini, E.O., Chernicoff, C.J., Santos, J.O.S. et al. Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina. Int J Earth Sci (Geol Rundsch) 101, 2083–2104 (2012). https://doi.org/10.1007/s00531-012-0774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0774-3

Keywords

Navigation